

RISA Webinar

AISC 14th Edition Steel Design in RISA

Presenter: Matt Brown, P.E.

RISAFIOOT RISAFIOOT 6.0

RISA-3D RISA-3D 10.0

INTEGRATED PROGRAMS

AISC 360-10 (14th Edition Steel Construction Manual)

Image courtesy of AISC.org

REFERENCED CODES

Today's Topics

- Slenderness (Chapter B)
- Local Buckling (Chapter F)
- Torsional Buckling (Chapter E)
- Direct Analysis Method (Chapter C)
- Leaning Column Effect (Chapter C)

OVERVIEW

New Slenderness Check

SLENDERNESS (CHAPTER B)

Local Buckling due to Bending

- WT's and Double Angles
- Flange Local Buckling
- Stem Local Buckling

LOCAL BUCKLING (CHAPTER F)

L-torque = Unbraced Length for Twisting

Torsional Buckling of Wide Flange shapes applies when....

L-torque > Lbyy and L-torque > Lbzz

FLEXURAL-TORSIONAL BUCKLING (CHAPTER E)

AISC Specification Appendix 7

Direct Analysis Method

AISC Specification Chapter C

Design for Stability

DIRECT ANALYSIS METHOD

Direct Analysis Requirements

- 1. Second Order Analysis (P- Δ , P- δ)
- 2. Stiffness Reduction (EI*, EA*)
- 3. Notional Loads

Cantilever Column

- W12x45
- 200k Gravity Load
- 10k Lateral Load
- 12'-0" Tall

Initial Shear: 10k

Initial Moment: (10k)*(12 ft) = 120 ft-k

Initial Deflection: 1.021"

EXAMPLE PROBLEM 1

Deflections

Step 0 (Initial) 1.021"

Step 1 1.166"

Step 2 1.186"

Step 3 1.189"

Step 4 (Final) 1.190"

EXAMPLE PROBLEM 1

Cantilever Column

- W8x35
- 200k Gravity Load
- 10k Lateral Load
- 12'-0" Tall

Initial Shear: 10k

Initial Moment: (10k)*(12 ft) = 120 ft-k

Initial Deflection: 8.073"

Deflections

Step 0 (Initial) 8.073"

Step 1 17.146"

Step 2 27.479"

Step 3 39.565"

Step 4 54.345"

EXAMPLE PROBLEM 2

Direct Analysis Requirements

- 1. Second Order Analysis (P- Δ, P-δ)
- 2. Stiffness Reduction (EI*, EA*)
- 3. Notional Loads

Flexural Stiffness

$$EI^* = 0.8\tau_b EI$$

$$\tau_b = f\left(\frac{P_u}{P_n}\right)$$

Axial Stiffness

$$EA^* = 0.8EA$$

Without Reduction

Initial Deflection = 1.021"

Final Deflection = 1.19"

Final Moment = 140 k-ft

U.C. = 1.021

With Reduction

Initial Deflection = 1.268"

Final Deflection = 1.538"

Final Moment = 146 k-ft

U.C. = 1.042

STIFFNESS REDUCTION

Direct Analysis Requirements

- 1. Second Order Analysis (P- Δ, P-δ)
- 2. Stiffness Reduction (EI*, EA*)
- 3. Notional Loads

Per AISC Code of Standard Practice

Erection Tolerance for Columns

(out of plumb) = H/500

Notional Load (N) = P/500

NOTIONAL LOADS

Direct Analysis Requirements

- 1. Second Order Analysis (P- Δ, P- δ)
- 2. Stiffness Reduction (EI*, EA*)
- 3. Notional Loads

$$K = 1.0$$

Traditional Design

Direct Analysis

M = 120 k-ft

M = 148 k-ft

K = 2.1

K = 1.0

Req'd Shape:

Req'd Shape:

W12x65

W12x50

COMPARISON

Middle Column is Pin-Pin (Leaning)

LEANING COLUMN EFFECT (CHAPTER C)

 $P-\Delta$ effect on Middle Column adds to Destabilizing (Leaning) Effect.

Because column is Pin-Pin it cannot resist this effect

LEANING COLUMN EFFECT (CHAPTER C)

Solution:

Add additional (fictitious) story shear which will be carried by the non-leaning columns

LEANING COLUMN EFFECT (CHAPTER C)

Additional Resources

- AISC Publications
- RISA-3D Help File / Manual
- www.risanews.com

Presenter: Matt Brown, P.E.

Questions?

Please let us know if you have questions.

We will answer as many questions as time permits during the webinar.

Once the webinar is closed, we will post all Q&A's, as well as the Quick Reference Guide, to our website: www.risa.com

For further information, contact us at: info@risatech.com

Thank you for Attending!