

EFFICIENT DESIGN OF HSS CONNECTIONS

PRESENTED BY KIM OLSON, PE, FORSE CONSULTING, LLC

TRUE OR FALSE ??

HSS structures, in general, are more expensive than those made up primarily of wide flange sections

- Material
 - Columns
 - Beams
- Fabrication
 - Weld shop or bolt shop?

SHEAR CONNECTIONS

SINGLE PLATE CONNECTION

SCALE : 1" = 1'-0"

WT CONNECTION

SCALE : 1" = 1'-0"

SHEAR CONNECTIONS

DOUBLE ANGLE CONNECTION

SCALE: 1" = 1'-0"

THROUGH PLATE CONNECTION

SCALE: 1" = 1'-0"

THROUGH PLATE SHEAR CONNECTION

Research found it is 4 times more expensive to specify a through plate than a shear plate welded to the face of the HSS wall.

Increase your wall thickness to avoid a through

plate connection.

Watch your weld symbols.

2 directions.

THROUGH PLATE SHEAR CONNECTION

When to specify a through plate shear connection

- Axial loads
- Delegated connection engineer and column is too thin

When NOT to specify a through plate shear connection

As your standard connection!!!

MOMENT CONNECTION

PJP OPTION
SCALE: 1" = 1'-0"

CJP OPTION

SCALE: 1" = 1'-0"

MOMENT CONNECTION

THROUGH PLATE OPTION

SCALE: 1" = 1'-0"

3/4" PLATE TOP & BOT.
W/ (8) 3/4" Ø A325 BOLTS

5/6" PLATE W/
(3) 3/4" Ø A325 BOLTS

W12x45

CUT OUT PLATE OPTION

SCALE: 1" = 1'-0"

MOMENT CONNECTION COST COMPARISON

	PJP Weld	CJP Weld	Through Plate	Cut Out Plate
Column Wall t (in)	5/8	5/8	3/8	3/8
Relative Costs	1.0	1.43	1.59	1.38

WELDS MATCHED VS STEPPED CONNECTION

Matched Connection

Stepped Connection

WELDS MATCHED CONNECTION

Tube Profiling

Weld backing

Steel backing

MATCHED VS STEPPED CONNECTION

TRUSSES

Minimum weight of the truss ≠ least cost Fabrication costs factor heavily into finished structure cost

TRUSS CONNECTIONS-WELD SIZING

Size to develop the yield strength of the branch member

- Conservative
- Upper limit of weld size
- Appropriate if plastic stress redistribution is required for connection (moving loads)

Size to resist applied forces

Must account for effective weld lengths

Proper joint design should allow you to specify an economical fillet weld

TRUSS CONNECTIONS - WELD SIZING

Gapped

Less expensive

Overlapped

- Stronger joint
- Higher percentages of overlap, the higher the joint strength -> stiffer truss

PJP VS CJP WELDS

PJP welds are a good option if fillet weld sizes become large

CJP welds are generally not required and should be avoided Increase HSS wall thickness if needed

Fillet weld ≈ 2 hours fit up work for one guy

CJP weld $\approx 1 - 1.5$ days fit up work plus owner-incurred UT testing

PURCHASING HSS FROM A SERVICE CENTER

Lengths of members? Waste?

Available sizes - Capability Tool

NOW TO THE REALLY EXCITING STUFF...

..... THE CODE!

AISC 360-10, CHAPTER K

- Tables
 - Prescriptive
 - Unique to the Spec
- Repetitive
- Limits of Applicability

AISC 360-16, CHAPTER K

- "Additional Requirements for HSS and Box-Section Connections"
- Introduction clearly states the requirements of Chapter J also apply

ROUND SECTIONS

- Largely unchanged
 - New Limit of Applicability
 - Shear tab not mentioned
 - Cap plate not mentioned

Packer, 2015

RECTANGULAR SECTIONS

- References Chapter J
- Fundamentally

RESOURCE - LIMIT STATE TABLE - AXIAL

RESOURCE - LIMIT STATE TABLE

https://steeltubeinstitute.org/hss/hss-information/aisc-360-16/

A500 GR B VS GR C SMACKDOWN

- DUAL CERT!!!
- Always specify Grade C!

Atlas Tube Canada ULC 200 Clark St. Harrow, Ontario, Canada NOR 1G0

Tel: 519-738-3541 Fax: 519-738-3537

MATERIAL TEST REPORT

PARTING WISDOM

Due to the flexibility of their walls, local strength of an HSS at the connection may control the capacity of the connection.

This is very different than designing for Wide Flange (WF) supports.

Understanding this while sizing members will mean efficient and economical connections without the need for costly stiffeners or reinforcing.

EFFICIENT DESIGN OF HSS CONNECTIONS

Ben Follett, PE RISA Kim Olson, PE Steel Tube Institute

ZOOM WEBINAR SETTINGS

Audio Options:

Questions:

AVAILABLE DESIGN CODES

AISC 360-16/10/05 (ASD/LRFD) AISC 341-10 (ASD/LRFD) CSA S16-14/09

AVAILABLE HSS CONNECTION TYPES

Shear Connections

- HSS Column/Beam Clip Angle
- HSS Column/Beam End Plate
- HSS Column/Beam Shear Tab

Moment Connections

- HSS Column/Beam Ext. End Plate
- HSS Column/Beam Flange Plate
- HSS Column/Beam Direct Weld

Truss

HSS to HSS

Brace

- Vertical Diagonal Brace
- Vertical Chevron Brace
- Knee Brace

Baseplate

- HSS Column
- HSS Column w/ Vertical Brace

INTEGRATION

QUESTIONS...?

