RISA Webinar

Understanding and Optimizing Hot Rolled Steel Design in RISA

Presenter: Matt Brown, P.E.
INTEGRATED PROGRAMS

RISAFloor 5.1

RISA-3D 9.1
• AISC 360-05 (13th Edition Steel Construction Manual)
• AISC Design Guide #9 (Torsion)
• AISC Design Guide #11 (Vibration)

Images courtesy of AISC.org
Today’s Topics

• Direct Analysis Method
• Warping Torsion
• Single Angles
• Floor Vibrations
• Steel Joists
AISC Specification Chapter C

Stability Analysis and Design

AISC Specification Appendix 7

Direct Analysis Method
Direct Analysis Requirements

1. Second Order Analysis ($P-\Delta$, $P-\delta$)
2. Stiffness Reduction (EI^*, EA^*)
3. Notional Loads
Cantilever Column

- W12x45
- 200k Gravity Load
- 10k Lateral Load
- 12’-0” Tall
Initial Shear: 10k

Initial Moment: \((10k) \times (12 \text{ ft}) = 120 \text{ ft-k}\)

Initial Deflection: \(\frac{PL^3}{3EI} = 0.981''\)
Bending Deflection: \(\frac{PL^3}{3EI} = 0.981" \)

Shear Deflection: \(\frac{cPL}{AwG} = 0.035" \)
Final Shear: 11.6k
Final Moment: 139 ft-k
Final Deflection: 1.182”

16% Increase over First-Order
Final Shear: 12.5 k
Final Moment: 140 ft-k
Final Deflection: 1.216”
Direct Analysis Requirements

1. Second Order Analysis ($P-\Delta$, $P-\delta$)
2. Stiffness Reduction (EI^*, EA^*)
3. Notional Loads
Flexural Stiffness

\[EI^* = 0.8 \tau_b EI \]

Axial Stiffness

\[EA^* = 0.8EA \]

\[\tau_b = f \left(\frac{P_u}{P_n} \right) \]
Direct Analysis Requirements

1. Second Order Analysis ($P-\Delta$, $P-\delta$)

2. Stiffness Reduction (EI^*, EA^*)

3. Notional Loads
Per AISC Code of Standard Practice

Erection Tolerance for Columns
(out of plumb) = \(\frac{H}{500} \)

Notional Load (\(N \)) = \(\frac{P}{500} \)
Direct Analysis Requirements

1. Second Order Analysis \((P – \Delta, P – \delta)\)
2. Stiffness Reduction \((EI^*, EA^*)\)
3. Notional Loads

\[K = 1.0 \]
<table>
<thead>
<tr>
<th>Traditional Design</th>
<th>Direct Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M = 120\text{ k-ft}$</td>
<td>$M = 152\text{ k-ft}$</td>
</tr>
<tr>
<td>$K = 2.1$</td>
<td>$K = 1.0$</td>
</tr>
<tr>
<td>Req’d Shape:</td>
<td>Req’d Shape:</td>
</tr>
<tr>
<td>W12x40</td>
<td>W12x45</td>
</tr>
</tbody>
</table>

COMPARISON
Warping Torsion affects Wide Flange and Channel Shapes
Idealize as two WT sections, each in minor axis bending
Geometric Bending Principal Bending

SINGLE ANGLES
Floor Vibration Procedure:

1. Determine damping weight
2. Determine beam natural frequency
3. Calculate expected acceleration
Damping Weight

Beam Self Weight

+ Slab Weight

+ Realistic Superimposed Load (11 psf?)
Allowable Acceleration

• Based on 65 lb excitation force (footfall)
• 0.5% g for Offices, Residences, Churches
• 1.5% g for Shopping Malls
STEEL JOISTS

Actual Load

Equivalent Uniform Load

W

P

w’
Additional Resources

- AISC Publications
- RISA-3D Help File / Manual
- www.risanews.com

Presenter: Matt Brown, P.E.
Questions?

Please let us know if you have questions.

We will answer as many questions as time permits during the webinar.

Once the webinar is closed, we will post all Q&A’s, as well as the Quick Reference Guide, to our website: www.risa.com

For further information, contact us at: info@risatech.com

Thank you for Attending!