RISA Technologies

Using RISA to Design a Building from Foundation to Roof

Deborah Brisbin, P.E.

Total Building Design

Today's Agenda

Laying out your building in RISAFloor
Modeling in RISAFloor
Importing from DXF
Importing from Revit Structure
Design Criteria
Loads
Uniform Area Loads
Snow loading-Tapered Area Loads
Point Loads & Distributed Line Loads

Columns & Walls
Defining Splices in Columns
Wall Openings

Parent & Child Relationships

•Rigid versus Flexible Diaphragms

Total Building Design

Today's Agenda

- Laying out the building geometry
- Columns
- Area Loads
- Design Criteria
- Parent & Child Relationships
- Rigid versus Flexible Diaphragms
- RISA-3D Lateral Loads
- RISAFoundation

Laying out the Building Geometry

- Drawing the model in RISAFloor First → "Supports": Columns & Walls Then Beam systems
- Import your model from a Drawing DXF format Plan Level - Floor by Floor
- Import your model from Revit Structure ENTIRE model is Imported

Columns

Column are modeled as Column Stacks

which occupy a particular "plan" location within the building model.

Single Story Stack

11 Colu	mn Stacks			Q.				24. Ja				
	Stack Label	Project Grid	٢[١١] ٢	X [ft]	LIIT NO.	Length [ft]	Bot EI. [ft]	T op ΕΙ. [ft]	Shape	Material	Function	Design Rules
1	CS1 (A-1)	A-1	0	0	1	30	0	30	Wide Flange	A36 Gr.36	Gravity	Default
2	CS2 (B-1)	B-1	0	10	1	30	0	30	Wide Flange	A36 Gr.36	Gravity	Default
3	CS3 (C-1)	C 1	0	20	4	30	0	30	Wide Flange	A36 Cr.36	Cravity	Default
4	CS4 (A-2)	A-2	10	0	1	30	0	30	Wide Flange	A36 Gr.36	Gravity	Default
5	CS5 (B-2)	B-2	10	10	1	30	0	30	Wide Flange	A36 Gr.36	Gravity	Default
6	CS6 (C-2)	C-2	10	20	1	13.133	0	13.133	Wide Flange	A36 Gr.36	Gravity	Default
7					2	16.867	13.133	30	Wide Flange	A36 Gr.36	Gravity	Default
8	CS7 (A-3)	A-3	20	0	1	30	0	30	Wide Flange	A36 Gr.36	Gravity	Default
-	000 (0.0)		0.0	4.0	4	0.0		00	140.1 51	100.0.00	0 1	

Multiple Story Stack

Columns

Design Criteria- Design Rules

Data Entry

Protect Grid Materials Deck Definitions Design Rules Area Load Definitions Point Locations Columns Column Stacks Wall Panels Beams

> Diaphragms Point Loads

Line Loads

Tapered Area Loads Load Combinations

Floors

📶 Desig	n Size/U.C. Par	ameters					
Size/UC	Deflection Co	ncrete Rebar Ma	asonry Wall Wo	od Wall (Studs)	Wood Wall (Fa	steners) Wood Diap	ohragms
	Label	Max Depth[in]	Min Depth[in]	Max Width[in]	Min Width[in]	Max Bending Chk	Max Shear Chk
1	Typical					1	1
•							

Control your member design based on:

- Depth
- Width
- Maximum Code Check

Size/UC Deflection Concrete Rebar Masonry Wall Wood Wall (Studs) Wood Wall (Fasteners) Wood Diaphragms	
Label DL Defl[in] DL Ratio LL Defl LL Ratio DL+LL Defl[in] DL+LL Categ Defl[in] Ratio Categ Defl[in]	Ratio
1 Typical 240 360 240 None 360 None	360

Control the Deflection using DL, LL, or DL+LL Ratios or Maximums

Area Loads

• Area Loads are Automatically Applied based on the Floors Spreadsheet

11 Floo	rs								
	Label	Elevation[ft]	Area Load Default	Deck Default	Deck Angl	Parent	Inacti	Splic	Splic
1	Floor Plan 1	10	Public	Flat Slab	0	None		10	Moment
2	Floor Plan 2	20	Office	Metal Deck	0	None		7.5	Moment
3	Floor Plan 3	30	Roof	Metal Deck	0	None		7.5	Moment

• Default Area Loads defined in the Area Loads Definitions Spreadsheet

11 Unife	orm Area Lo	ads						
Standa	rd Other							
	Label	Addit	PreDL[ksf]	PostDL[ksf]	LL[ksf]	LL Type	VL[ksf]	Dyn Load[ksf]
1	Office			.01	.08	LL-Reduce	.011	.075
2	Storage			.01	.125	LLS-Non	.011	.175
3	Public			.01	.1	LL-Non	.004	.075
4	Add Piping			.02		LL-Non	.011	

Additive Check box – Otherwise loads replace each other

PreDL, Post DL - Pre and Post composite Dead Loads

LL Type- LL - Live Load (Reducible on Non-Reducible),

RLL - Roof Live Load (Reducible on Non-Reducible)

SL - Snow Load

SLN - Non Shedding Snow Load

RL - Rain Load

Vibration Live Loads- used to check floor vibration per AISC Design Guide 11

Dyn Load- Dynamic Mass- the load used for Seismic weight above and beyond the self weight – PreDL and PostDL are NOT included.

Area Loads

RISAFIOOR

 One Way or Two Way Load Attribution defined in the Deck Definitions Spreadsheet- Loads tab

11 Deck	Loads				
Genera	I Composite Loads				
	Label	Two Way	Self Wt [ksf]	Const DL [ksf]	Const LL [ksf]
1	Flat Slab		.075	0	.02
2	Composite Deck		.05	0	.02
3	Metal Deck		.003	0	.02
4	Wood		.003	0	.02

Two Way Load

One Way Load

Walls

RISAFIOOR

Material: Wood Masonry General(Concrete, CF Steel, etc.)

Type: Gravity Lateral (also Gravity loads)

Openings: Doors Windows

Regions needed for Design (Piers)

Wall Panel Editor [Cur	rrently Editing - WP1]
Floor Plan 1	
	R5 R2 L1 L2 R1 R6 R3
<	
Draw Toolbox Snap Options	Wall Panel Material Masonry
✓ Quarter Points ✓ Third Points Grid Increments H 40@.5 ft V 20@.5	Block Nom Width 10* Flex Steel 60 ksi Density Block Length 16 in Shear Steel 60 ksi Block Mati Conc 115 pcf Block Height 8 in Grout Weight 140 pcf
Font Size S	OK Cancel Help

Parent & Child Relationships

Parent Floor is the Original Floor

Child Floor is a COPY of the Parent Floor

11 Floo	rs								
	Label	Elevation[ft]	Area Load Default	Deck Default	Deck Angl	Parent	Inacti	Splic	Splic
1	Basement	10	Office	Flat Slab	90	None		10	Moment
2	1st Floor	25	Office	Composite Deck	90	None		15	Moment
3	2nd Floor	35	Office	Composite Deck	90	1st Floor		10	Moment
4	3rd Floor	45	Office	Composite Deck	90	1st Floor		10	Moment
5	4th Floor	55	Office	Composite Deck	90	None		10	Moment
6	5th Floor	65	Office	Composite Deck	90	None		10	Moment
7	Roof	75	Office	Metal Deck	90	None		10	Moment

All Geometry & Loads on the Parent floor E Child Floor

All Geometry & Loads on the Child floor 🔁 Parent Floor

Note: You can Detach Parent from Child but there is no return.

Diaphragms

Diaphragms are defined in RISAFloor as you add the Slab or Deck edge.

Rigid Diaphragms:

RISAFloor uses Membrane Rigid Diaphragms:

The Lateral loads are distributed the In-Plane Lateral Loads, while allowing for the beams and frames to take out of plane vertical loads.

Diaphragm spreadsheet available in RISA-3D:

, 🖲, Floo	r Diaphrag	gms									
	Elevati	Mass[k]	Mass MOI[k*ft^2]	Center of Mass[ft]	Plus X Ecc	Minus X E	Plus Z Ecc	Minus Z Ecce	Inactive	Diaphragm	Туре
1	75	693.7761	1.04105e+6	54.9304, 35.997	%5	%5	%5	%5		D12	Flexible
2	75	693.7761	1.04105e+6	54.9304, 128.003	%5	%5	%5	%5		D13	Flexible
3	65	1084.2192	1.62978e+6	55.0058, 35.9961	%5	%5	%5	%5		D10	Rigid
4	65	1084.2192	1.62978e+6	55.0058, 128.0039	%5	%5	%5	%5		D11	Rigid
5	55	1084.2192	1.62978e+6	55.0058, 35.9961	%5	%5	%5	%5		D8	Rigid
6	55	1084.2192	1.62978e+6	55.0058, 128.0039	%5	%5	%5	%5		D9	Rigid
7	45	1084.2192	1.62978e+6	55.0058, 35.9961	%5	%5	%5	%5		D6	Rigid

The **Eccentricity** is used to used to defined the amount of accidental eccentricity used for the calculation of your seismic loads.

Note: These eccentricities are ignored for flexible diaphragms.

Diaphragms

Flexible Diaphragms:

Distributes lateral loads directly to the Lateral members

- RISAFloor/RISA-3D will analyze all flexible diaphragms
- RISAFloor/RISA-3D will designs Wood Flexible Diaphragms
 - You must define a Diaphragm Region in order to get design
 - Diaphragm regions are rectangular in shape, and must be oriented along the principal X and Z axes.
 - RISA-3D will provide nailing patterns and panel thickness required with Chord Forces.

		NAIL SPACING	SCHED	DULE			
Zone	Location	Label	Lines	Framing	Boundary	Cont	Other
	(ft)			Width (in)	(in)	Edge (in)	Edge (in)
Α	0	C1/3B_3_S1_3/8_8d@2/3/1	1	3	2	2	3
В	.871	C1/3B_3_S1_3/8_8d@4/6/1	1	3	4	4	6
D	0	C1/3B_3_S1_3/8_8d@2/3/1	1	3	2	2	3
E	36.871	C1/3B_3_S1_3/8_8d@4/6/1	1	3	4	4	6
F	51.653	C1/3B_3_S1_3/8_8d@6/6/1	1	3	6	6	6

RISA-3D Lateral Loads

RISA calculates the Wind Load Force for EACH diaphragm:

-Wind Load Paran	neters					
Wind Coo	le ASCE 7-05 💌	Importance Cat. 2	 Topographic 	Fac. K1 0	Topographic Fac. K3	0
Wind Speed (mpl	h) 90	Exposure Cat. B	Topographic	Fac. K2 0	Directionality Fac. Kd	1
Base Elevatio	n 10	ft				
Wind Generation Flo	or Force/Stres	s Results				
Floor Level	qz (ksf)	Windward Pres. (ksf)	Leeward Pres. X (ksf)	Leeward Pres. Z (ksf)	Force X (k)	Force Z (k)
2nd Floor	.012	.008	.005	.005	5.663	5.055

RISA calculates the Seismic Force for each diaphragm:

Occupancy Cat I or II TL sec Add Base Weight Ct Exp. (S_D1 .16 g S_DS .27 g S_1 .1 g Ct Exp. (/,X) .75 1,Z) .75
Occupancy Cat I or II ▼ TL sec Add Base Weight Ct Exp. (S_D1 .16 g S_DS .27 g S_1 .1 g Ct Exp. (V,X) .75 H,Z) .75
Occupancy Cat I or II TL sec Add Base Weight Ct Exp. (S_D1 .16 g S_DS .27 g S_1 .1 g Ct Exp. (/,X) .75 1,Z) .75
Occupancy Cat I or II TL Sec Add Base Weight Ct Exp. (/,X) .75
Occupancy Cat Lor II TL Sec Add Base Weight Ct Exp. ((X) 75
Base Elevation ft Ct (H,Z) 035 T (H,Z) sec R (H,Z) 4
	4
Seismic Code ASCE 7-2005 Ct (VX) 025 T (VX) sec B (/ X) [4

RISAFoundation

- Loads from RISAFloor (Gravity) and RISA-3D (Lateral)
- Loads based on Categories
 From RISA-3D you must define Load Categories

Final Things to Consider About RISA Building System

- One Model for both Gravity and Lateral Design
 - One file means less data to manage
 - All changes to geometry apply to the entire structure
- Export the model to finish your Construction drawings
 - DXF floor by floor
 - Revit Structure

Learn more in depth features about RISAFoundation

** New Webinar** August 11, 2010

Comprehensive Design of Shallow Foundations with RISAFoundation

Questions?

Please let us know if you have questions.

We will answer as many questions as time permits during the webinar.

Once the webinar is closed, we will post all Q&A's to our website: <u>www.risatech.com</u>

For further information, contact us at: info@risatech.com

THANK YOU!

