

New Features in RISA-3D, RISAFloor & RISAFoundation

Deborah Brisbin, P.E.

IBC 2009 Compliant

**** NEW CODES ADDED ****

- ✓ Concrete ACI 318-08
- ✓ Wood
 NDS 2008
- ✓ Cold Formed Steel AISI 2004 Supplement AISI 2007
- ✓ Masonry MSJC 2008
- ✓ International Codes 2004/2005 Canadian Concrete Code 2004/2007 Mexican CANACERO (CFS)

Global Parameters	
Description Solution Codes Concrete Seismic Footings	
Hot Rolled Steel : AISC 360-05: ASD Adjust Stiffness (Direct Analysis Method) : Yes (Iterative)	
Cold Formed Steel : AISI NAS-07: ASD	
Wood : AF&PA NDS-05/08: ASD	
Wood Temperature < 100F	
Concrete : ACI 318-08	
Masonry : ACI 530-05/08: ASD	
Aluminum : 🗛 ADM1-05: ASD - Building 💌	
Save as Defaults	
OK Cancel Apply Help	

Concrete Wall Design

- Gravity and Shear wall design
- Reinforcement design based on Wall Design Rules
- Deflections based on FEA
- P-Delta Analysis and second order effects
- Icr Factors in Wall Panel Spreadsheet
- Comprehensive Detail Report

Concrete Wall Design Rules

, 🍬 Conc	, é, Concrete Wall Panel Cover Parameters										
Concret	te Wall (Rebar)	Concrete Wall (Cov	ver)) Masonry Wall Wood Wall (Studs) Wood Wall (Fasteners)					eners)		
	Label Outer Bars						Int Cover -z[in]	Ext Cover +z[in]	Edge Cover[in]		
1	Typical	Vertical	Eac	h Face	-		1	1	2		
				h Face tered							

Outer bars orientation: (d measured from the vertical bars)

Exterior Face

Concrete Wall Design

🔶 Concrete Wall Panel Cover Parameters											
Concrete Wall (Rebar) Concrete Wall (Cover) Masonry Wall Wood Wall (Studs) Wood Wall (Fasteners)											
	Label	Outer Bars	Location		Int Cover -z[in]	Ext Cover +z[in]	1	Edge Cover[in]			
1	Typical	Vertical	Each Face		1	3		2			
				_							

Concrete Wall Design

Concrete Walls are color coded in Rendered view so that you can determine your local axis and reinforcement.

Use ***New Modify Wall Panels- Flip Axis

Interior = Light Grey

-Z

Seismic Detailing & Design Provisions

- AISC Specifications for Structural Steel: AISC 360-05
 AISC Seismic Provisions for Structural Steel: AISC 341-05 AISC 358-05
- Based on Seismic Design Rules applied to members
- Based on Member Type: Beam, Column or Brace
- Uses Earthquake Load Combinations- and Overstrength (if required)
- Results in Detail Report and Spreadsheets

- Calculation of moment demand based on probable plastic moment, Mpr
- Calculation of Panel Zone shear requirements
- Calculation of required shear demand for moment connections

 Bending Flange
 Seismic NonCompact
 Compression Flange
 Seismic NonCompact

 Bending Web
 Seismic Compact
 Compression Web
 Seismic Compact

Table 1-2 thru 1-6- "Sections that Satisfy Local Buckling Requirements"

- Clean Column Checks including Stiffener and Continuity plate checks
- Strong Column / Weak Beam checks
- Brace Slenderness Checks
- Calculation of Unbalanced forces for braces
- Check for AISC 358 limits of pre-qualification testing

Seismic Design Rules Spreadsheet

1	🔌 Frame / HR Column Seismic Design Rule										
	Column Beam Brace										
		Label	Frame Ductility	Overstrength Reqd							
	1	OCBF	Minimal								
	2	SCBF	High								
	3	OMF	Minimal								
	4	IMF	Moderate								
	5 SMF-RBS High 🔽										

🗼 HR Beam Seismic Design Rule										
Column Beam Brace										
	Label	Moment C	Overstr	Z Factor	Hinge Location[in]					
1	OCBF	Other/None	V							
2	SCBF	Other/None	K							
3	OMF	BUEEP			12					
4	IMF	BFP			12					
5	SMF-RBS	RBS	٤	.763	14					

- Frame Ductility High, Moderate, or Minimal (SMF, IMF, or OMF)
- Overstrength Required Check separately for Column or Beam
- Z Factor Ratio between Z values of reduced and unreduced beam sections (RBS)
- Hinge Location measured from face of column to the hinge

Seismic Design Graphics

•Display Seismic Design Rules with color coding

Color Coded: Column Stiffness

Seismic Detailing- Moment Frame Types

•Bolted Flange Plate (BFP)

Reduced Beam Section(RBS) used in SMF and IMF

Moment Frame Types •Bolted Unstiffened Extended End Plate (BUEEP)

•Bolted Stiffened Extended End Plate (BSEEP)

• Welded Unreinforced Flange-Welded Web (WUF-W)

RISAFoundation Features

- Overturning for Mat slabs
- Sliding checks for Mat Slabs

Islab Overturning Safety Factors										
Overturning Safety Factors Sliding Safety Factors										
	LC	Slab	Mo-XX[k-ft]	Ms-XX[k-ft]	Mo-ZZ[k-ft]	Ms-ZZ[k-ft]	Ms-XX/Mo-XX	Ms-ZZ/Mo-ZZ		
1	1	S1	3.532	785.628	.009	278.78	222.408	31727.131 🔺		
2	1	S2	.011	449.012	1.981	2819.544	41258.31	1423.499	41	
3	1	S3	6.344	816.269	.009	250.339	128.674	28475.381		
4	1	S4	4.079	736.341	.004	243.907	180.534	60503.55 🗸		

•New Quad mesher for FEA Analysis – FASTER & More Accurate

•Pile Cap EXF Export

Additional New Features

- Single Angle Bending Check
- Wall Local Axis Flip

•

- P-Delta added for Wall Panels
- Enhanced & Re-organized Masonry walls Self Weight in Materials Spreadsheet Steel Fy in Materials Spreadsheet

, á, Maso	onry Properties										
Hot Rol	lled Cold Formed	Wood	Concrete	Masonry	Aluminum	General					
	Label	E [ksi]	G [ksi]	Nu	Therm	Self Weight	fm[ksi]	Flex Steel[ksi]	Shear Steel[ksi]		RISAPInor
1	Concrete Matl	1350	540	.25	.6	Custom	1.5	60	60		
2	Clay Matl	1050	420	.25	.6	Custom	1.5	60	60	. Q N	
									🔰 🕲 🔊	UU	DiG Foundation
									6 4		kisapoundation

Questions?

Please let us know if you have questions.

We will answer as many questions as time permits during the webinar.

Once the webinar is closed, we will post all Q&A's to our website: <u>www.risa.com</u>

For further information, contact us at: info@risatech.com

THANK YOU!

