RISA Technologies

Using RISAFloor for Commercial Building Design

Deborah Brisbin, P.E.

Commercial Buildings

Today's Agenda

- Design Criteria to optimize your beam selection
- Joist Design and Joist Girders
- Sloping Roofs
- Composite Design
- Vibration Analysis
- Using all of the RISAFloor features to build a Commercial Building

Design Criteria- Design Rules

🕼 Design Size/U.C. Parameters								
Size/UC	Deflection Co	ncrete Rebar Ma	asonry Wall Wo	od Wall (Studs)	Wood Wall (Fa	steners) Wood Diap	ohragms	
	Label	Max Depth[in]	Min Depth[in]	Max Width[in]	Min Width[in]	Max Bending Chk	Max Shear Chk	
1	Typical					1	1	
-	_	_						

Control your member design based on:

- Depth
- Width
- Maximum Code Check

11 Desi	ill Design Deflection Parameters												
Size/UC Deflection Concrete Rebar Masonry Wall Wood Wall (Studs) Wood Wall (Fasteners) Wood Diaphragms													
	Label	DL Defl[in]	DL Ratio	LL Defl	LL Ratio	DL+LL Defl[in]	DL+LL	Categ	Defl[in]	Ratio	Categ	Defl[in]	Ratio
1	Typical		240		360		240	None		360	None		360

Control the Deflection using DL, LL, or DL+LL Ratios or Maximums

Data Entry 🛛 🛛
Project Grid
Materials
Deck Definitions
Design Rules
Area Load Definitions
Point Locations
Columns
Column Stacks
Wall Panels
Beams
Diaphragms
Point Loads
Line Loads
Tapered Area Loads
Load Combinations
Floors

Joists : Loading

- Uniform Dead Load, UDL
- Uniform Live Load, ULL includes: LL, LLS, RLL, SL, SLN, RL
- Uniform Total Load, UTL = UDL + ULL

Important Notes:

- None of the Uniform loads include the Other Load category
- ✓ Load combinations are not used to create UDL, ULL or UTL

Total Joist Load: 88.5% Capacity Actual UDL = .059k/ft Actual ULL = .3k/ft Actual UTL = .359k/ft Total Load Capacity = .405k/ft

Joists: Special Loading Special Joist Load Diagram: Distributed Loads (k/ft), Point Loads (k): Spacing (ft) Note: OL loads not included in Joist Design Point Loads : TL / L 0 0 0 0 0 0 0 0 0 0 0 0

Any Non-Uniform Loading= SPECIAL JOIST (SP)

The design is based on the capacity shear envelope of the joist under a standard uniform load. (Grey outline).

Calculations from <u>Designing with Vulcraft: Steel Joists,</u> <u>Girders and Steel Deck</u>

261

Joists : Special Loading

Special Joist loading

Length = 30 feet

Point loads at 1/3 points

Max Shear is not the Critical Point of design

Joists Girders

Girders are called out based on the assumed depth

28G refers to the DEPTH of the Joist Girder (28")

8N corresponds to the NUMBER of equally spaced concentrated loads

29.2K refers to the MAGNITUDE of the concentrated loads (23 kips + 6 kips = 29 kips)

Joists Girders- Special

Non-Uniform Point loads→ Special Joist Girders

Joist Girder Load Tolerance sets the maximum load variation to be allowed when specifying that standard joist girder call-out.

When the load variation exceeds this, the call-out will switch to "Special"

Joists Girders- Moment of Inertia

Given: Depth only Estimated Moment of Inertia:

Izz = .027*2.*4*(beam length/12)*JG depth

Given: Depth, number and magnitude of point loads Estimated Moment of Inertia:

Izz = .027*Joist spacing*Point load*(beam length/12)*JG depth

Draw Beams		
Draw Beams	Modify Pr	operties 🛛 Modify Design 🗍 Cantile
- Beam Materia	I and Shape	Options
O Hot Rol	led	O Shape Group:
C Cold Fo	rmed	24G 💌
C Wood		Custom Joist Girder Gro
C Concrete		24G10N35.2K
🗢 Alumin	um	

Reported in Detail Report

Common Questions

How are my joists selected?

What is the criteria for Joist selection?

1) Span

2) Capacity

3) Joist Weight

How did a 2.5K2 get selected?

Spans below 8' are not available on the K-Joist table.

4' – 8': 2.5" K-Series Joists Substitutes used.

Common Questions

How are my joists selected?

Total Joist Load: 64% Capacity

Actual UDL = .049k/ft Actual ULL = .067k/ft Actual UTL = .115k/ft Total Load Capacity = .18k/ft

	16K3	16K2	14K6	14K4	14K3	14K1	12K5	12K3	12K1	10K1	8K1	Joist
	16	16	14	14	14	14	12	12	12	10	8	Depth (in.)
	6,3	5,5	7.7	6,7	6.0	5.2	7,1	5.7	5,0	5.0	5.1	Approx. Wt (lbs./ft.)
												Span (ft.)
									1 1		550 550	8
											550 550	9
										550	550 480	10
1										550 542	532 377	11
							550 550	550 550	550	550 455	444	12
							550	550	550	479	377	13
1			330	200	550	550	550	550	500	412	324	14
t			550	550	550	511	550	543	434	358	281	15
t	550	550	550	000	550	448	550	470	380	313	240	16
t	550	512	550	550	495	395	550	420	336	277	119	17
t	500	450	550	530	441	352	507	374	299	240		18
	455	408	550	475	395	315	454	335	208	221		19
+	410	368	525	428	356	284	409	302	241	113		20
+	371	333	475	388	322	257	370	273	218	-97		21
-	285	255	299	248	212	170	198	153	123	-		55
	247	222	259	215	184	147	172	132	106			22
	216	194	226	188	268 160	214 128	308	116	101			23
	283	254	302 199	295 165	245	196	282 132	208	166			24
	260	234	334	272	226	180						25
1	240	210	308	251	209	100						26
t	167 240 148	150 210 133	175 308 156	145 251 129	124 209 110	100						26

Actual UTL < Load Capacity (Black #)

Common Joist Questions

Can I analyze an existing joist?

Sloping Roofs

Sloping Roofs

- Rise/Run
- Angle
- Max Height

Change Elevation	on of Selected Points 🛛 🕐 🔀
Roof Definition	Elevate Points
- Roof Definition -	4 / 12 (in/in)
C Angle	(Degrees)
🔿 Max. Height	0 (H)
Enter Rise and R	un of the roof.
🔲 Keep this dialog	g open?
Select two reference	e points to define the base plane of the roof.
	<u>Close</u> <u>Clear</u> <u>H</u> elp

Or Just Elevate the Points

Composite Beam Design

Global Parameters								
Description Solution Codes Composite Wind Seismic Concrete								
Composite Options								
Use Non-Composite if Optimum								
Effective Width End Offset 10 %								
Orthogonal Beam Angle 45 Degrees								
Beam/Deck Parallel Angle 10 Degrees								
- Stud Options								
Use Uniform Studs Only								
Min. Percent Composite 25 %								
Max. Percent Composite 100 %								
Max. Stud Spacing 36 in								
Min. Stud Spacing 4.5 in								
Stud End Offset 0 in								
Min. Width for 2 Rows 5.5 in								
Min. Width for 3 Rows 8.5 in								
Save as Defaults								
OK Cancel <u>Apply</u> Help								

Control the Composite parameters in the Global Parameters

Composite Beam Design

• Uniform Studs (# Studs)

(21)

21)

(21)

OR

• Segmented Studs (# Studs) shown at every Segment

OR

 Manually Change your Studs with the Redesign Tool

Member Redesign : Fl Available Shapes	oor 1, Member M12
W33X201 W33X169 W33X152 W33X141 W33X130 W33X118 W30X391	Eurrent Hesuits Bending Check Shear Check Defl. Ratio Defl. Max .997 .29 469 1.022 Results Messages None
W30X357 W30X326 W30X292 W30X261 W30X235 W30X211 W30X191 W30X191 W30X191	Design Criteria Material Redesign Rules A992 Typical Composite Member?
₩30K140 ₩30K132 ₩30K132 ₩30K132 ₩30K16	Uniform Studs 100 Segment Studs 21 21 17 21 21
Optimize	

W30X108

(17) C=.75 (21)

(21)

(2

Vibration

- ✓ Based on the AISC Design Guide 11
- Total Vibration Loads applied =
 Self wt (members + deck) + Vibration Load (VL)

VL = Superimposed Dead Load + Live Load

 ✓ Applied as a uniform distributed load (Section 3.3 of the AISC Design Guide)

11 Unif	🔢 Uniform Area Loads								
Standa	rd Other								
	Label	Addit	PreDL[ksf]	PostDL[ksf]	LL[ksf]	LL Type	VL[ksf]	Dyn Load[ksf]	
1	Office			.01	.08	LL-Reduce	.011	.075	
2	Storage			.01	.125	LLS-Non	.011	.175	
3	Public			.01	.1	LL-Non	.004	.075	
4	Add Piping	N		.02		LL-Non	.011		

Global Parameters	2 🗙
Description Solution Codes Composite Wind Seismic Concrete	
Live Load Reduction ASCE 7-98/02/05 Floors	
Live Load Reduction ASCE 7-98/02/05 Roofs	
Joist Girder Load Tolerance: 2 Kips	
Hot Rolled Steel AISC: ASD 9th	
Cold Formed Steel AISI 01: ASD	
Wood NDS 2005: ASD	
Wood Temperature < 100F	
Concrete : ACI 2005	
Masonry : MSJC 05/IBC 06 ASD -	
Beam Vibrations AISC DG 11 Damping: .03	
Save as Defaults	
OK Cancel Apply Help	,

Vibration- Color Coded

Based on Acceleration

Based on Frequency

MIRISA

Let's build a Commercial Building Model

Final Things to Consider About RISAFloor

- Import and Export Geometry
 - ✓ Revit Structure
 - **RISA** has the most comprehensive link with Revit
 - ** New Webinar** May 27, 2010

Complete Integration between RISA and Autodesk Revit Structure

- ✓ DXF
- One Model for both Gravity and Lateral Design
 - ✓ You can also design your foundation with RISAFoundation
 - ** New Webinar** August 11, 2010

Comprehensive Design of Shallow Foundations with RISAFoundation

Questions?

Please let us know if you have questions.

We will answer as many questions as time permits during the webinar.

Once the webinar is closed, we will post all Q&A's to our website: <u>www.risatech.com</u>

For further information, contact us at: info@risatech.com

THANK YOU!

