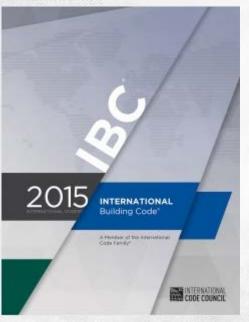
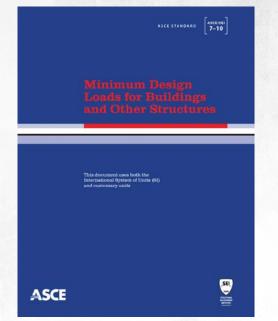


WIND LOADING ON NON-BUILDING STRUCTURES Matt Brown, S.E.

3D RISA-3D

Today's Webinar Objectives


- Understanding the Code
- Applying Loads
 - Wind
 - Ice
- Interpreting Results


Let's Start Loading!

IIRISA

Design per IBC 2015...

...which references ASCE 7-10

Part 1: Wind Loading

Chapter 26 – General Requirements

• Calculation of basic wind parameters:

Risk Category

V = Basic Wind Speed

Kd = Wind Directionality Factor

Exposure Category

Kzt = Topographic Factor

G = Gust Effect Factor

Risk Category (Table 1.5-1)

Assume that tank holds hazardous chemicals at industrial site

-Category IV: Essential Facilities

-Category IV: Poses Substantial Hazard to Community-

-Category IV: Required for Essential Facilities to function

Risk Category (Table 1.5-1)

Assume that tank holds hazardous chemicals at industrial site

-Category III: Poses Substantial Risk to Human Life

-Category III: Could Substantially Impact Day-to-Day Life

Category III/IV*: Hazardous Chemicals

*Determined by Jurisdiction Authorities

I = 1.00 (Table 1.5-2)

Basic Wind Speed

Project Site: East St. Louis, Illinois 62201

V = 120 mph (Figure 26.5-1B)

Note: This is a Strength Design Level Wind (ASCE 7-10) In ASCE 7-05 this would have been 90 mph

Wind Directionality Factor (Table 26.6-1)

Separate Factors for Tank versus Tower and Tank Legs Tank: Kd = 0.95 (Round Tanks) Tank Legs: Kd = 0.85 (Lattice Framework)

Tower: Kd = 0.85 (Lattice Framework)

Exposure Category (Section 26.7.3)

Exposure Category D: Water Surface for at least 1 mile

Exposure Category B: Dense Buildings or Forests for at least 1/2 mile

Exposure Category C: All Other Cases

Site Photo (Worst Case Direction)

Therefore, Exposure Category C

Topographic Factor (Section 26.8.2)

Levee along river is 10 feet high (H = 10 ft)

Levee on opposite bank is 1,500 ft away

Condition 1: No obstructions within distance $100^{*}H$ $100^{*}H = 1,000 \text{ ft} < 1,500 \text{ ft}$

Therefore, Condition 1 is met

Topographic Factor (Section 26.8.2)

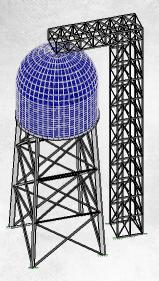
Condition 2: No obstructions of at least half height within 2 miles

Levees are of equal height 1,500 ft < 2 miles

Therefore, Condition 2 is not met

Therefore, Kzt = 1.0

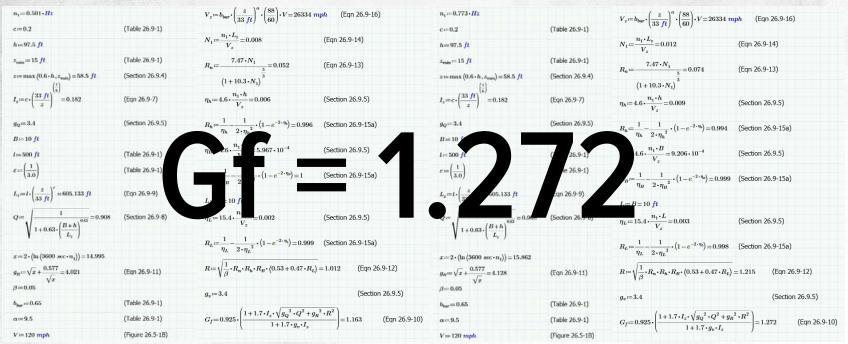
Gust Effect Factor (Section 26.9)


Requires determination if structure is Rigid or Flexible

Rigid: $n \ge 1 Hz$ T < 1 sec</th>Flexible:n < 1 HzT > 1 sec

Gust Effect Factor (Section 26.9)

From Dynamic Analysis:



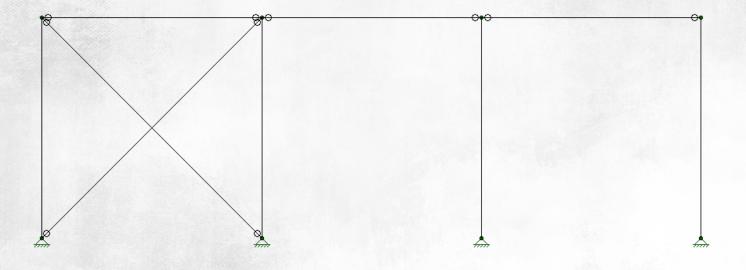
DICA

Tank and Legs:n = 8.4 Hz (Rigid)G = 0.85Tower:0.5 Hz < n < 0.77 Hz (Flexible)

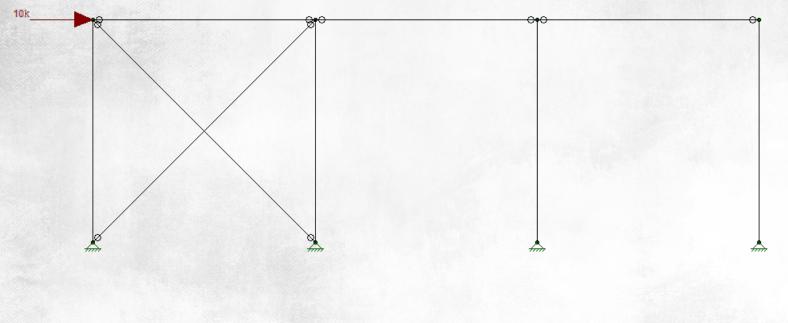
Gust Effect Factor (Section 26.9)

IRISA

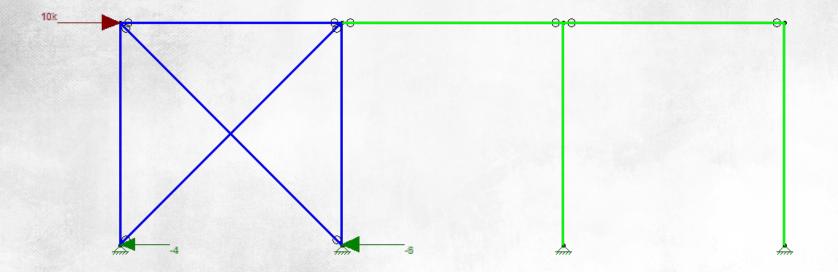
Wind Concepts

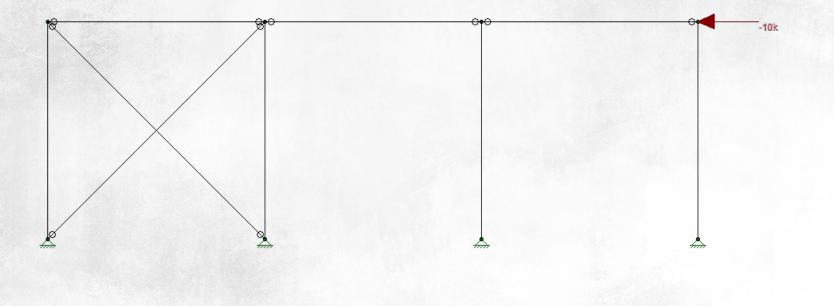

Main Wind Force Resisting System

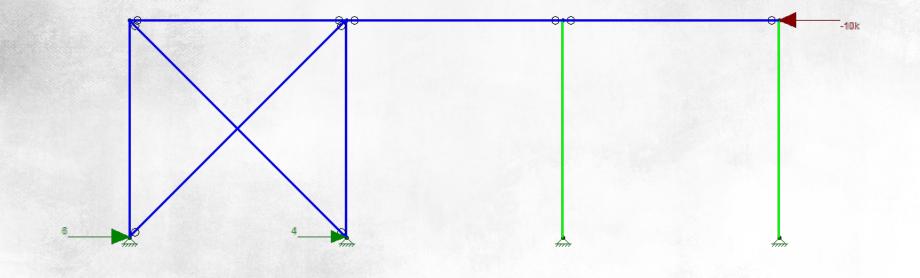
• Elements of the structure which are essential to keeping the entire structure from collapsing due to wind.

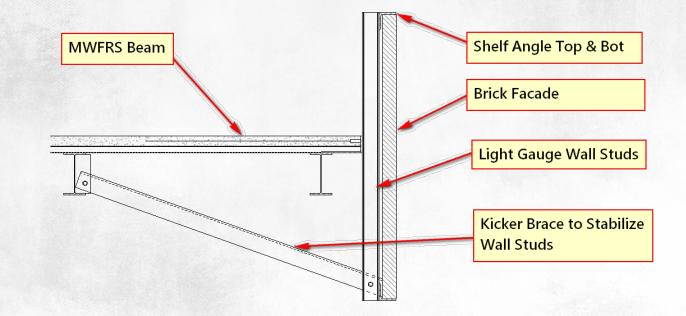

Components and Cladding

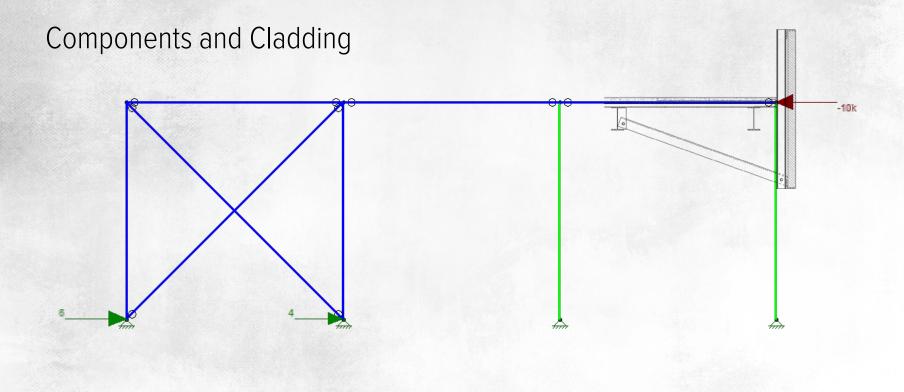
- Elements (Structural or Non-Structural) which transmit wind forces to the Main Wind Force Resisting System.
- Not essential for overall structural stability



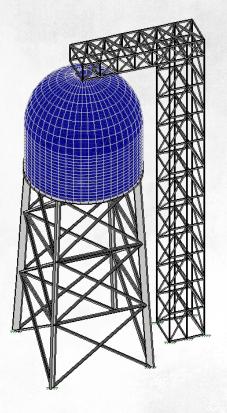








Components and Cladding


IRISA

Main Wind Force Resisting System

- No cladding or façade
- All elements contribute to overall stability

Therefore, no components and cladding

ASCE 7-10 Main Wind Force Resisting System Chapters

-Chapter 27: Buildings of All Heights-

-Chapter 28: Low Rise Buildings-

Chapter 29: Roof Overhangs, Parapets, and Other Structures

Chapter 29 Preconditions

Regular-Shaped Structure

No Special Response Characteristics

No Channeling or Buffeting Effects at Site

Velocity Pressure Exposure Coefficient

Height = 100 feet (approx)

Exposure Category C

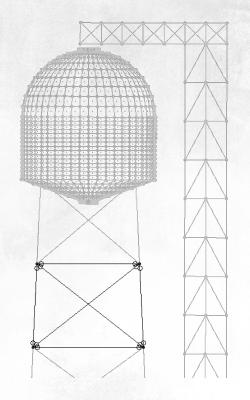
Kz = 1.26 (Table 29.3-1)

Velocity Pressure (Tank)

- Kz = 1.26Kzt = 1.00Kd = 0.95
- V = 120 mph
- $qz = 0.00256^{Kz}Kz^{Kd}(V^{2}) = 44.1 \, psf$

Velocity Pressure (Tank Legs and Tower)

- Kz = 1.26Kzt = 1.00Kd = 0.85
- V = 120 mph
- $qz = 0.00256^{Kz}Kz^{Kz}Kd^{*}(V^{2}) = 39.5 \text{ psf}$

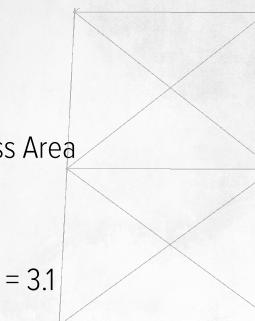

Force Coefficient (Tank Legs)

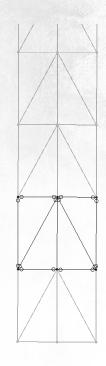
Trussed Tower (Figure 29.5-3)

 ϵ = Ratio of Solid Area to Gross Area

$$\varepsilon = 88 \, \text{sf} / 509 \, \text{sf} = 0.17$$

$$Cf = 4.0^{*} \varepsilon^{2} - 5.9^{*} \varepsilon + 4.0 = 3.1$$


Force Coefficient (Tower)


Trussed Tower (Figure 29.5-3)

 ϵ = Ratio of Solid Area to Gross Area

$$\varepsilon = 16.5 \text{ sf} / 92.5 \text{ sf} = 0.17$$

Cf = $4.0^{*} \varepsilon^{2} - 5.9^{*} \varepsilon + 4.0$

Force Coefficient (Tank)

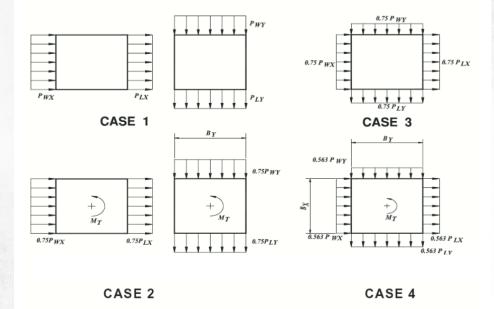
Tanks (Figure 29.5-1) Assume Smooth h = 100 ft D = Diameter = 32 ft $D^*(qz)^{(1/2)} = 213 > 2.5$ h/D = 3.125 $Cf = [0.1^*(3.125 \text{ ft} - 1 \text{ ft}) / (7 \text{ ft} - 1 \text{ ft})] + 0.5 = 0.54$

Design Wind Pressures

Tank Legs: $(39.5 \text{ psf})^*(0.85)^*(3.1/2) = 52 \text{ psf}$

Tower: $(39.5 \text{ psf})^*(1.272)^*(3.1/2) = 78 \text{ psf}$

Tank: $(44.1 \text{ psf})^*(0.85)^*(0.54) = 20.2 \text{ psf}$

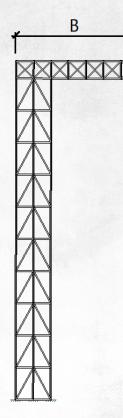


Wind Load Cases

Straight Wind

Quartering Wind

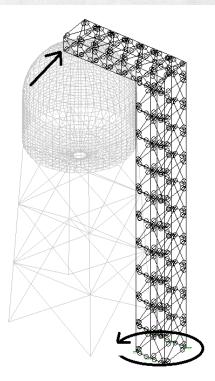
Torsion



Wind Torsion (Tower)

There is no clear "B" dimension Conservatively use the maximum width

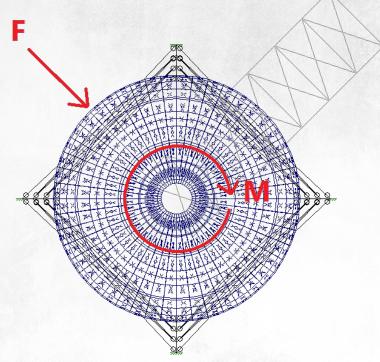
 $e = 0.15^*B = (0.15)^*(35 \text{ ft}) = 5.25 \text{ ft}$ M = F*e = F*5.25 ft-lbs



Wind Torsion (Tower)

Conservatively Apply as a Point Load

P = M / 30 ft = 0.175*F


Wind Torsion (Tank)

e = 0.15*D = (0.15)*(32 ft) = 4.8 ft

 $M = F^*e = F^*4.8$ ft-lbs

Apply as circumferential line load

 $w = (M / (D/2)) / (D^*\pi) = 0.003^*F lbs/ft$

Part 2: Ice Loading

risa.com

Chapter 10 – Atmospheric Icing

- Calculation of ice loading parameters: Risk Category
 - t = Nominal Ice Thickness
 - fz = Height Factor
 - Kzt = Topographic Factor
 - Vc = Concurrent Wind Speed
 - Dc = Approximate Diameter of Member

Risk Category

Already calculated as Category III

I = 1.25 (Table 1.5-2)

Nominal Ice Thickness

t = 1" (Figure 10-2)

Height Factor

Conservatively take height (z) as 100 ft for everything

 $fz = (z/33)^{0.1} = 1.12$

Topographic Factor

Already calculated as 1.0

(Eqn 10.4-5)

Design Ice Thickness

td = 2.0*t*l*fz*(Kzt)^0.35 td = 2.8"

Design Ice Density

 γ = 56 pcf

Concurrent Wind Speed

V = 40 mph (Figure 10-2)

Design Velocity Pressures

Tank: qz = 4.9 psf

Tank Legs and Tower: qz = 4.4 psf

Concurrent Wind Speed

V = 40 mph (Figure 10-2)

Design Velocity Pressures

Tank: qz = 4.9 psf

Tank Legs and Tower: qz = 4.4 psf

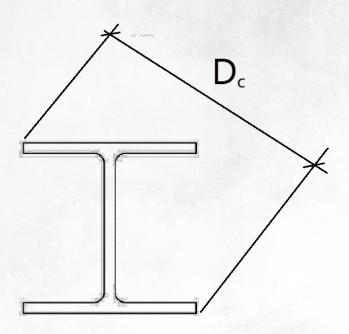
Design Wind Pressures

Tank Legs: $p = (4.4 \text{ psf})^*(0.85)^*(3.1/2) = 5.8 \text{ psf}$

Tower: $p = (4.4 \text{ psf})^*(1.272)^*(3.1/2) = 8.7 \text{ psf}$

Tank: $p = (4.9 \text{ psf})^*(0.85)^*(0.54) = 2.25 \text{ psf}$

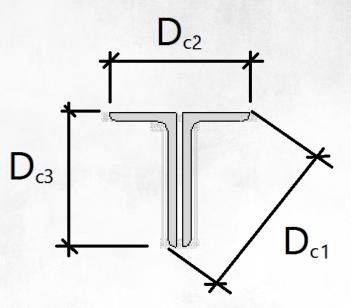
Approximate Member Diameter


Must be Hand Calculated for each member size List of Shapes Susceptible to Icing:

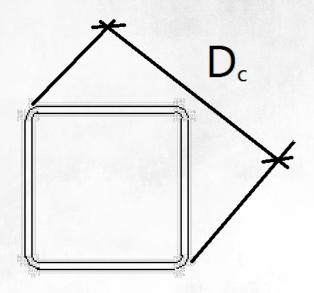
- W24x76
- LL6x6
- HSS4x4

Approximate Member Diameter

W24x76 Dc = 25.5"



Approximate Member Diameter


LL6x6 Dc = MAX[Dc1, Dc2, Dc3] Dc = 12"

Approximate Member Diameter

HSS4x4 Dc = 5.7"

Ice Weight (Members)

 $w = \gamma^* \pi^* t d^* (Dc+td)$

W24x76:	96.8 lbs/ft
LL6x6:	50.6 lbs/ft
HSS4x4:	29.1 lbs/ft

Ice Weight (Tank)

 $w = \gamma^* \pi^* td = 41 psf$

Ice Wind (Members)

Conservatively assume that wind acts perpendicular to Dc dimension

 $w = p^*(Dc+2^*td)$

W24x76:	15 lbs/ft
LL6x6:	8.5 lbs/ft
HSS4x4:	8.3 lbs/ft

Ice Wind (Tank)

Tank profile with and without ice is nearly identical (32' versus 32.56') Therefore apply wind load the same as standard wind load

Load Combinations

Design per AISC ASD

- 1. 1.0*D
- 2. 1.0*D + 1.0*L + 0.7*I
- 3. 1.0*D + 0.7*I +/- 0.7*Wi
- 4. 1.0*D +/- 0.6*W
- 5. 1.0*D + 0.75*L +/- 0.45*W
- 6. 0.6*D +/- 0.6*W
- 7. 0.6*DL + 0.7*I +/- 0.7*Wi

Wind Loads (Expanded)

For each case where W is applied we need:

- 1. WLX
- 2. WLZ
- 3. 0.75WLX + 0.75WLZ
- 4. 0.75WLX 0.75WLZ
- 5. 0.75WLX + 0.75WLY
- 6. 0.75WLX 0.75WLY
- 7. 0.75WLZ + 0.75WLY
- 8. 0.75WLZ 0.75WLY
- 9. 0.563WLX + 0.563WLZ + 0.75WLY
 10. 0.563WLX 0.563WLZ + 0.75WLY
 11. 0.563WLX + 0.563WLZ 0.75WLY
- 12. 0.563WLX 0.563WLZ 0.75WLY

Straight Wind in the X Direction Straight Wind in the Z Direction Quartering Wind Opposite Quartering Wind Eccentric Wind in the X Direction Opposite Eccentric Wind in the X Direction Eccentric Wind in the Z Direction Opposite Eccentric Wind in the Z Direction Eccentric Quartering Wind Eccentric Opposite Quartering Wind Opposite Eccentric Opposite Quartering Wind

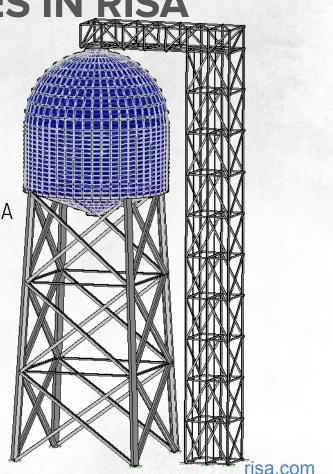
Ice Wind Loads (Expanded)

It would be difficult to quantify eccentric torsion for the wind load.

Engineering Judgement: Effect would be negligible anyway

Therefore, for each case where Wi is applied we need:

- 1. WLX
- 2. WLZ
- 3. 0.75WLX + 0.75WLZ
- 4. 0.75WLX 0.75WLZ


Straight Wind in the X Direction Straight Wind in the Z Direction Quartering Wind Opposite Quartering Wind

Upcoming Webinar:

Part 3 of 3: Dynamic Loading on Non-Building Structures in RISA 3/2/2016

QUESTIONS?

Please let us know if you have questions

- We will answer questions for the next 5 minutes
- Once the webinar is closed, we will post all Q&A's at risa.com
- For further information, contact us at info@risa.com

