

RISA Webinar

In-Depth Look at Wood Wall Design in RISA

Presenter: Deborah Brisbin, P.E.

Version 4.1

Version 8.1

LATEST VERSION

Walls geometry is based on the Design Rules Spreadsheet (Studs, etc.)

, 🖲 , Wood	d Wall Panel Par	ameters						
Size/UC	Concrete Rebar	Masonry Wal	Wood Wall	(Studs)	Woo	d Wall (Fasten	ers)	
	Label	Top Plate	Sill Plate	Stud	S	Min Stud S	Max Stud	Green Lu
1	Typical	2-2X6	2X6	2X6		16	16	
				•				

Design criteria can be set in the Design Rules

, \land Addit	tional Wood Wal	I Panel Parameters								
Size/UC	Concrete Reba	r 🛛 Masonry Wall 🗍 Wood	Wall (Studs)	Wood Wall (Fa	isteners)					
	Label	Schedule	Min. Panel	Max. Panel	Double Si	Max. Nail	Min. Nail S	HD Chords	HD Chord M	Hold Down
1	Typical	IBC06 Panel Database	.375	.4688	Optimum	6-in.	3-in.	2-2X6	Same as Wall	SIMP HDA Database

Or you can narrow down the criteria in the Wood Schedules

	Label	Grade	Min T	Min Pe	Over Gyps	One/Tw	Nail Size	Staple Size	Nai	Shear Capa
-	S1_5/16_6d@6	St-I	.3125	1.25	No	1	6	n/a	6	.2
	S1_(2)5/16_6d@6	St-I	.3125	1.25	No	2	6	n/a	6	.4
anel Groups	S1_3/8_8d@6	St-I	.375	1.375	No	1	8	n/a	6	.23
el Database	S1_(2)3/8_8d@6	St-I	.375	1.375	No	2	8	n/a	6	.46
nel Group	S1_7/16_8d@6	St-I	.4375	1.375	No	1	8	n/a	6	.255
el Group	S1_(2)7/16_8d@6	St-I	.4375	1.375	No	2	8	n/a	6	.51
nel Group	S1_15/32_8d@6	St-I	.4688	1.375	No	1	8	n/a	6	.28
Panel Group	S1_(2)15/32_8d@6	St-I	.4688	1.375	No	2	8	n/a	6	.56
d) Panel Group	S1_15/32_10d@6	St-I	.4688	1.5	No	1	10	n/a	6	.34
	S1_(2)15/32_10d@6	St-I	.4688	1.5	No	2	10	n/a	6	.68
	S1_5/16_6d@4	St-I	.3125	1.25	No	1	6	n/a	4	.3
	S1_(2)5/16_6d@4	St-I	.3125	1.25	No	2	6	n/a	4	.6
	S1_3/8_8d@4	St-I	.375	1.375	No	1	8	n/a	4	.36
	S1_(2)3/8_8d@4	St-I	.375	1.375	No	2	8	n/a	4	.72
	S1_7/16_8d@4	St-I	.4375	1.375	No	1	8	n/a	4	.395
	S1_(2)7/16_8d@4	St-I	.4375	1.375	No	2	8	n/a	4	.79
	S1 15/32 8d@4	St-I	.4688	1.375	No	1	8	n/a	4	.43
	<									

Using this Spreadsheet

Select the Code

Then select the "Group" for design OR Select a Single Panel

• Based on the Excel Spreadsheets outside of the RISA programs C:\RISA\RISA_Wood_Schedules\ShearPanels

	A19 -	fx S1_15/32_8d@4				2
	A	В	С	D	E	
1	Label	Panel Grade	Min Panel Thickness	Min Penetration	Panel Applied Over Gypsum	One
2	UNITS		in	in		
3	S1_5/16_6d@6	St-I	0.3125	1.250	No	
4	S1_(2)5/16_6d@6	St-I	0.3125	1.250	No	
5	S1_3/8_8d@6	St-I	0.3750	1.375	No	
6	S1_(2)3/8_8d@6	St-I	0.3750	1.375	No	
7	S1_7/16_8d@6	St-I	0.4375	1.375	No	
8	S1_(2)7/16_8d@6	St-I	0.4375	1.375	No	
9	S1_15/32_8d@6	St-I	0.4688	1.375	No	
10	► ► IBCO6 Panel Database	e 0.3125 Panel Group	0.375 Panel Group 0	43 4	No	

Shear Panel Schedule

Selec IBC Avai

> IBC 0.3 0.3 0.4 0.4

Simple S1_5/16_6d@6 St-I .3125 1.25 No 1 6 n/a 6 .2 13 e Panel Groups S1_2/3/6_6d@6 St-I .3125 1.25 No 2 6 n/a 6 .4 26 Spanel Database S1_2/3/6_8d@6 St-I .375 1.375 No 1 8 n/a 6 .4 26 Panel Group S1_2/3/6_8d@6 St-I .375 1.375 No 1 8 n/a 6 .46 38 S1_2/16_8d@6 St-I .4375 1.375 No 1 8 n/a 6 .51 325 16 Panel Group S1_2/15/32_8d@6 St-I .4688 1.375 No 1 8 n/a 6 .51 32 14 (30) Panel Group S1_15/32_10d@6 St-I .4688 1.375 No 1 8 n/a 6 .56 28 14 (10d) Panel Group S1_15/32_10d@6 St-I .4688 1.5 No 1		Label	Grade	Min T	Min Pe	Over	On	Nail	Staple Size	Nai	Shear Capa	Ga[kip/in]
S1_(2)5/16_6d@6 St-I .3125 1.25 No 2 6 n/a 6 .4 26 S1_3/8_8d@6 St-I .3125 1.375 No 1 8 n/a 6 .23 19 S1_3/8_8d@6 St-I .375 1.375 No 1 8 n/a 6 .23 19 S1_2/3/8_8d@6 St-I .375 1.375 No 1 8 n/a 6 .46 38 Panel Group S1_2/16_8d@6 St-I .4375 1.375 No 1 8 n/a 6 .46 38 S1_2/2)7/16_8d@6 St-I .4375 1.375 No 1 8 n/a 6 .255 16 S1_2/2)7/16_8d@6 St-I .4688 1.375 No 1 8 n/a 6 .28 14 80/ Panel Group S1_2/2)15/32_10d@6 St-I .4688 1.375 No 1 8 n/a 6 .28 14 80/ Panel Group S1_2/2)15/32_10d@6 St-I <td>-</td> <td>S1_5/16_6d@6</td> <td>St-I</td> <td>.3125</td> <td>1.25</td> <td>No</td> <td>1</td> <td>6</td> <td>n/a</td> <td>6</td> <td>.2</td> <td>13</td>	-	S1_5/16_6d@6	St-I	.3125	1.25	No	1	6	n/a	6	.2	13
S1_3/8_8d@6 St-I .375 1.375 No 1 8 n/a 6 .23 19 inel Database S1_(2)3/8_8d@6 St-I .375 1.375 No 2 8 n/a 6 .46 38 anel Group S1_(2)7/16_8d@6 St-I .4375 1.375 No 2 8 n/a 6 .46 38 anel Group S1_(2)7/16_8d@6 St-I .4375 1.375 No 2 8 n/a 6 .255 16 0/ Panel Group S1_(2)7/16_8d@6 St-I .4375 1.375 No 1 8 n/a 6 .51 32 0/) Panel Group S1_(2)5/32_3d@6 St-I .4688 1.375 No 1 8 n/a 6 .56 28 0/) Panel Group S1_(2)5/32_3d@6 St-I .4688 1.5 No 2 10 n/a 6 .56 28 S1_(2)5/12_6d@4 St-I .3125 1.25 No 1 6 n/a 4 .3		S1_(2)5/16_6d@6	St-I	.3125	1.25	No	2	6	n/a	6	.4	26
hel Database anel Group S1_(2)3/8_8d@6 St-1 .375 1.375 No 2 8 n/a 6 .46 38 snel Group S1_7/16_8d@6 St-1 .4375 1.375 No 1 8 n/a 6 .456 38 anel Group S1_(2)7/16_8d@6 St-1 .4375 1.375 No 1 8 n/a 6 .255 16 anel Group S1_(2)7/16_8d@6 St-1 .4375 1.375 No 1 8 n/a 6 .255 16 y Panel Group S1_(2)15/32_8d@6 St-1 .4688 1.375 No 1 8 n/a 6 .256 28 y Panel Group S1_(2)15/32_10d@6 St-1 .4688 1.57 No 1 10 n/a 6 .34 22 S1_(2)15/32_10d@6 St-1 .4688 1.57 No 1 10 n/a 6 .34 22 S1_(2)5/15_6d@4 St-1 .3125 1.25 No 1 6 n/a 4 <	aroups	S1_3/8_8d@6	St-I	.375	1.375	No	1	8	n/a	6	.23	19
nel Group S1_7/16_8d@6 St-I .4375 1.375 No 1 8 n/a 6 .255 16 el Group S1_(2)7/16_8d@6 St-I .4375 1.375 No 2 8 n/a 6 .51 32 nel Group S1_15/32_3d@6 St-I .4375 1.375 No 2 8 n/a 6 .51 32 panel Group S1_15/32_3d@6 St-I .4688 1.375 No 2 8 n/a 6 .56 28 j Panel Group S1_15/32_10d@6 St-I .4688 1.5 No 1 10 n/a 6 .56 28 s1_15/32_10d@6 St-I .4688 1.5 No 1 10 n/a 6 .68 44 S1_2/516_6d@4 St-I .3125 1.25 No 1 6 n/a 4 .3 18 S1_2/36_3d@4 St-I .3125 1.25 No 1 8 n/a 4 .6 36 36 31_3/8 <td>tabase</td> <td>S1_(2)3/8_8d@6</td> <td>St-I</td> <td>.375</td> <td>1.375</td> <td>No</td> <td>2</td> <td>8</td> <td>n/a</td> <td>6</td> <td>.46</td> <td>38</td>	tabase	S1_(2)3/8_8d@6	St-I	.375	1.375	No	2	8	n/a	6	.46	38
El Group nel Group S1_(2)/1/6_8d@6 St-I .4375 1.375 No 2 8 n/a 6 .51 32 nel Group S1_15/32_8d@6 St-I .4688 1.375 No 1 8 n/a 6 .28 14 Panel Group S1_(2)15/32_8d@6 St-I .4688 1.375 No 2 8 n/a 6 .28 14 Panel Group S1_(2)15/32_8d@6 St-I .4688 1.375 No 2 8 n/a 6 .28 14 Panel Group S1_(2)15/32_10d@6 St-I .4688 1.5 No 1 10 n/a 6 .34 22 S1_(2)15/32_10d@6 St-I .3125 1.25 No 1 6 n/a 4 .3 18 S1_(2)15/32_8d@4 St-I .3125 1.25 No 1 8 n/a 4 .36 24 S1_(2)5/16_5d@4 St-I .375	roup	S1_7/16_8d@6	St-I	.4375	1.375	No	1	8	n/a	6	.255	16
nel Group S1_15/32_3d@6 St-I .4688 1.375 No 1 8 n/a 6 .28 14) Panel Group S1_15/32_10d@6 St-I .4688 1.375 No 1 8 n/a 6 .28 14) Panel Group S1_15/32_10d@6 St-I .4688 1.375 No 1 10 n/a 6 .56 28 51_15/32_10d@6 St-I .4688 1.5 No 1 10 n/a 6 .34 22 S1_15/15_66@4 St-I .4688 1.5 No 2 10 n/a 6 .68 44 S1_15/16_6d@4 St-I .3125 1.25 No 1 6 n/a 4 .3 18 S1_12/3/6_3d@4 St-I .3125 1.375 No 1 8 n/a 4 .36 24 S1_12/3/8_3d@4 St-I .375 1.375 No 1 8 n/a 4 .395 21 S1_12/3/16_3d@4 St-I <td< td=""><td>oup</td><td>S1_(2)7/16_8d@6</td><td>St-I</td><td>.4375</td><td>1.375</td><td>No</td><td>2</td><td>8</td><td>n/a</td><td>6</td><td>.51</td><td>32</td></td<>	oup	S1_(2)7/16_8d@6	St-I	.4375	1.375	No	2	8	n/a	6	.51	32
Panel Group () Panel Group S1_(2)15/32_8d@6 St-I .4688 1.375 No 2 8 n/a 6 .56 28 () Panel Group () No () No	roup	S1_15/32_8d@6	St-I	.4688	1.375	No	1	8	n/a	6	.28	14
d) Panel Group S1_15/32_10d@6 St-I .4688 1.5 No 1 10 n/a 6 .34 22 S1_(2)15/32_10d@6 St-I .4688 1.5 No 2 10 n/a 6 .68 44 S1_5/16_6d@4 St-I .3125 1.25 No 1 6 n/a 4 .3 18 S1_(2)5/16_6d@4 St-I .3125 1.25 No 2 6 n/a 4 .6 36 S1_3/8_8d@4 St-I .375 1.375 No 1 8 n/a 4 .36 24 S1_(2)3/8_8d@4 St-I .375 1.375 No 1 8 n/a 4 .36 24 S1_(2)3/8_8d@4 St-I .4375 1.375 No 1 8 n/a 4 .395 21 S1_(2)7/16_8d@4 St-I .4375 1.375 No 2 8 n/a 4 .79 42 S1_7/16_8d@4 St-I .4375 1.375 No 2 8 n/a 4 .79 42	el Group	S1_(2)15/32_8d@6	St-I	.4688	1.375	No	2	8	n/a	6	.56	28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	nel Group	S1_15/32_10d@6	St-I	.4688	1.5	No	1	10	n/a	6	.34	22
S1_5/16_6d@4 St-I .3125 1.25 No 1 6 n/a 4 .3 18 S1_2/25/16_6d@4 St-I .3125 1.25 No 2 6 n/a 4 .6 36 S1_3/8_8d@4 St-I .375 1.375 No 1 8 n/a 4 .6 36 S1_2/3/8_8d@4 St-I .375 1.375 No 1 8 n/a 4 .72 48 S1_7/16_8d@4 St-I .4375 1.375 No 1 8 n/a 4 .395 21 S1_2/21/16_8d@4 St-I .4375 1.375 No 2 8 n/a 4 .395 21 S1_2/21/16_8d@4 St-I .4375 1.375 No 2 8 n/a 4 .43 18		S1_(2)15/32_10d@6	St-I	.4688	1.5	No	2	10	n/a	6	.68	44
\$1_(2)5/16_6d@4 \$t-I .3125 1.25 No 2 6 n/a 4 .6 36 \$1_3/8_8d@4 \$t-I .375 1.375 No 1 8 n/a 4 .36 24 \$1_(2)3/8_8d@4 \$t-I .375 1.375 No 2 8 n/a 4 .72 48 \$1_(2)3/8_8d@4 \$t-I .4375 1.375 No 1 8 n/a 4 .395 21 \$1_(2)7/16_8d@4 \$t-I .4375 1.375 No 1 8 n/a 4 .395 21 \$1_(2)7/16_8d@4 \$t-I .4375 1.375 No 2 8 n/a 4 .79 42 \$1_15/32_8d@4 \$t-I .4375 1.375 No 1 8 n/a 4 .43 18		S1_5/16_6d@4	St-I	.3125	1.25	No	1	6	n/a	4	.3	18
S1_3/8_8d@4 St-I .375 1.375 No 1 8 n/a 4 .36 24 S1_2/36_8d@4 St-I .375 1.375 No 2 8 n/a 4 .72 48 S1_7/16_8d@4 St-I .4375 1.375 No 1 8 n/a 4 .72 48 S1_7/16_8d@4 St-I .4375 1.375 No 1 8 n/a 4 .395 21 S1_2/716_8d@4 St-I .4375 1.375 No 2 8 n/a 4 .79 42 S1_15/32_8d@4 St-I .4688 1.375 No 1 8 n/a 4 .433 18		S1_(2)5/16_6d@4	St-I	.3125	1.25	No	2	6	n/a	4	.6	36
S1_(2)3/8_8d@4 St-I .375 1.375 No 2 8 n/a 4 .72 48 S1_7/16_8d@4 St-I .4375 1.375 No 1 8 n/a 4 .395 21 S1_(2)7/16_8d@4 St-I .4375 1.375 No 2 8 n/a 4 .395 21 S1_(2)7/16_8d@4 St-I .4375 1.375 No 2 8 n/a 4 .79 42 S1 15/32_8d@4 St-I .4688 1.375 No 1 8 n/a 4 .433 18		S1_3/8_8d@4	St-I	.375	1.375	No	1	8	n/a	4	.36	24
S1_7/16_8d@4 St-I .4375 1.375 No 1 8 n/a 4 .395 21 S1_2/7/16_8d@4 St-I .4375 1.375 No 2 8 n/a 4 .79 42 S1 15/32 8d@4 St-I .4688 1.375 No 1 8 n/a 4 .433 18		S1_(2)3/8_8d@4	St-I	.375	1.375	No	2	8	n/a	4	.72	48
S1_(2)7/16_8d@4 St-I .4375 1.375 No 2 8 n/a 4 .79 42 S1 15/32 8d@4 St-I .4688 1.375 No 1 8 n/a 4 .43 18		S1_7/16_8d@4	St-I	.4375	1.375	No	1	8	n/a	4	.395	21
S1 15/32 8d@4 St-I .4688 1.375 No 1 8 n/a 4 .43 18		S1_(2)7/16_8d@4	St-I	.4375	1.375	No	2	8	n/a	4	.79	42
		S1 15/32 8d@4	St-I	.4688	1.375	No	1	8	n/a	4	.43	18
		<										
		S1 15/32 8d@4	St-I	.4688	1.375	No	1	8	n/a	4	.43	18

Required Fields

Label

Min Panel Thickness- Used to set the elastic stiffness of the wall panel used during the FEM solution.

Ga - Apparent Shear Stiffness – from NDS Equation 4.3-1

One/Two Sided – used during optimization

Boundary Nail Spacing – used during optimizaion

Shear Capacity – value for code check capacity

All other fields are Optional

Shear Capacity

- Based the Seismic Loads or the Wind Loads capacities With Global Parameters turned on
- Must use the Load Categories in Basic Load Cases & Load Combinations

🔎 Basi	c Load Cases		
	BLC Description	Category	Х
1	Dead Load	DL	
2	Wind Load	WL	
3	Earthquake Loads	EL (Earth -	
4		None	

Global Parameters
Description Solution Codes Concrete Footings
Number of Sections: 5 🛨 INTERNAL Sections: 100 💌
Shear Deformation
✓ Transfer Load Between Intersecting Wood Wall ✓ Increase Nailing Capacity for Wind
Area Load Mesh: 144 in^2 Merge Tolerance: .12 in
P-Delta Tolerance: 5 % (Convergence tolerance as a %)
Gravity Acceleration: 32.2 ft/sec^2 Wall Mesh Size: 12 in
Eigensolution: 1.E- 4 Convergence Tolerance
Vertical Axis: O X O Y O Z
Solver: C Standard Skyline C Sparse Accelerated
Save as Defaults Member Default Orientation
OK Cancel <u>A</u> pply Help

🔹 Load	Combinations											
Combin	nations Design											
	Description	Solve	PDelta	SR	BLC	Factor	BLC	Factor	BLC	Factor	BLC	Factor
1	IBC 16-8	K			DL	1						
2	IBC 16-9	K			DL	1	LL	1	LLS	1		
3	IBC 16-11 (a)	Z			DL	1	LL	.75	LLS	.75	RLL	.75
4	IBC 16-11 (b)	K			DL	1	LL	.75	LLS	.75	SL	.75
5	IBC 16-11 (c)	K			DL	1	LL	.75	LLS	.75	RL	.75
6	IBC 16-12 (a)	K			DL	1	WL	1				
7	IBC 16-12 (b)	Z			DL	1	EL	.7				

	Hold Down Schedule												
	Select Manufacturer	Label	Manufact	Regd Chor	Regd	AB	N	Bolt	N	F H	Defl at	D Factor	Allowable
	SIMPSON HDU	HDU2-SDS2.5	SIMPSON	3	DF	.625	0	n/a	6	S r	o .088	1.330	3.075
		HDU4-SDS2.5	SIMPSON	3	DF	.625	0	n/a	10	S r	o .114	1.330	4.565
	Available HD Series	HDU5-SDS2.5	SIMPSON	3	DF	.625	0	n/a	14	S r	o .115	1.330	5.645
	SIMP HDU Database	HDU8-SDS2.5	SIMPSON	3	DF	.875	0	n/a	20	S r	o .084	L.330	5.98
	HDU DF	HDU8-SDS2.5	SIMPSON	3.5	DF	.875	0	n/a	20	S r	o .116	1.330	6.97
	HDU_HF	HDU8-SDS2.5	SIMPSON	4.5	DF	.875	0	n/a	20	S r	o .113	1.330	7.87
	-	HDU11-SDS2	SIMPSON	5.5	DF	1	0	n/a	30	S r	o .137	1.330	9.535
		HDU11-SDS2	SIMPSON	7.25	DF	1	0	n/a	30	S r	o .137	1.330	11.175
		HDU14-SDS2	SIMPSON	5.5	DF	1	0	n/a	36	S r	o .177	1.330	14.39
		HDU14-SDS2	SIMPSON	7.25	DF	1	0	n/a	36	S r	o .177	1.330	14.925
		HDU2-SDS2.5	SIMPSON	3	HF	.625	0	n/a	6	S r	o .088	1.330	2.215
		HDU4-SDS2.5	SIMPSON	3	HF	.625	0	n/a	10	S r	o .114	1.330	3.285
		HDU5-SDS2.5	SIMPSON	3	HF	.625	0	n/a	14	S r	o .115	1.330	4.065
A		HDU8-SDS2.5	SIMPSON	3	HF	.875	0	n/a	20	S r	o .084	1.330	4.305
		HDU8-SDS2.5	SIMPSON	3.5	HF	.875	0	n/a	20	S r	o .116	1.330	5.02
		HDU8-SDS2.5	SIMPSON	4.5	HF	.875	0	n/a	20	S r	o .113	1.330	5.665
		HDU11-SDS2	SIMPSON	5.5	HF	1	0	n/a	30	S r	0.137	1.330	6.865
		<u>, </u>										Curren	t Selection T
lired Fields										Use Ent	re Series 🔽		SERIES

Label

Deflection at Peak Load used to calculate the deflection per APA/NDS formula.

$$\delta_{sw} = \frac{8vh^3}{EAb} + \frac{vh}{1000G_a} + \frac{h\Delta_a}{b}$$

 Δ_a = Total vertical elongation of wall anchorage system (including fastener slip, device elongation, rod elongation, etc.) at the induced unit shear in the shear wall, in

Since this is the PEAK Load, to find the actual deflection it is scaled per the actual tension force; by multiplying this value by the holddown ratio given in the output.

	Select Manufacturer	Label	Manufact	Regd Chor	Regd	AB	N	Bolt	N	F	н	Defl at .	. CD Factor	Allowable
	SIMPSON HDU	HDU2-SDS2.5	SIMPSON	3	DF	.625	0	n/a	6	S	no	.088	1.330	3.075
HNOLOGIES		HDU4-SDS2.5	SIMPSON	3	DF	.625	0	n/a	10	S	no	.114	1.330	4.565
	Available HD Series	HDU5-SDS2.5	SIMPSON	3	DF	.625	0	n/a	14	S	no	.115	1.330	5.645
	SIMP HDU Database	HDU8-SDS2.5	SIMPSON	3	DF	.875	0	n/a	20	S	no	.084	1.330	5.98
	HDU DF	HDU8-SDS2.5	SIMPSON	3.5	DF	.875	0	n/a	20	S	no	.116	1.330	6.97
	HDU_HF	HDU8-SDS2.5	SIMPSON	4.5	DF	.875	0	n/a	20	S	no	.113	1.330	7.87
		HDU11-SDS2	SIMPSON	5.5	DF	1	0	n/a	30	S	no	.137	1.330	9.535
		HDU11-SDS2	SIMPSON	7.25	DF	1	0	n/a	30	S	no	.137	1.330	11.175
		HDU14-SDS2	SIMPSON	5.5	DF	1	0	n/a	36	S	no	.177	1.330	14.39
		HDU14-SDS2	SIMPSON	7.25	DF	1	0	n/a	36	S	no	.177	1.330	14.925
		HDU2-SDS2.5	SIMPSON	3	HF	.625	0	n/a	6	S	no	.088	1.330	2.215
		HDU4-SDS2.5	SIMPSON	3	HF	.625	0	n/a	10	S	no	.114	1.330	3.285
		HDU5-SDS2.5	SIMPSON	3	HF	.625	0	n/a	14	S	no	.115	1.330	4.065
		HDU8-SDS2.5	SIMPSON	3	HF	.875	0	n/a	20	S	no	.084	1.330	4.305
		HDU8-SDS2.5	SIMPSON	3.5	HF	.875	0	n/a	20	S	no	.116	1.330	5.02
		HDU8-SDS2.5	SIMPSON	4.5	HF	.875	0	n/a	20	S	no	.113	1.330	5.665
		HDU11-SDS2	SIMPSON	5.5	HF	1	0	n/a	30	S	no	.137	1.330	6.865
		<												

CD Factor- the assumed load duration factor that was used to find the **Allowable Tension** value for that hold down. (1.33 per Simpson Catalog)

Allowable Tension – from the manufacturer's catalog - adjusted based on the difference between the assumed and actual load duration factors.

All other fields are Optional

Program Default – Continuous Pinned

Manually set to "FREE" Boundary Condition with HD's

NOTE: All Wall Boundary Conditions need to be added in the wall panel editor.

Boundary Conditions Assumptions

Joint Reactions Spreadsheet

• Per Wall Reactions- Forces & Moment

Display Individual Plate forces – Plot Options – Display Joint Reactions

Boundary Conditions Assumptions

BC Model.r3d

FEA Analysis

Wall Panel Loads

Distributed Loads

- Global Axis (X,Y,Z)
- Local Axis (x,y,z)

Joint Loads

- Joint Loads can be anywhere on the wall
- Need to create a Joint first

Surface Loads

 Not advisable for Wood Walls with Flexible Diaphragms Very little Out of Plane Stiffness

Segmented Design based on "Regions" defined within a wall

- A Region must be Rectangular
- Regions can be defined by the user
 Auto-Defined
 OR Not defined and Auto-Defined at run-time
- Only the Full-height Regions are designed
- Hold Downs are automatically placed at each side of the region

Segmented Design

Select Design Method in Wall Panel Editor: Segmented Perforated FTAO

Or in the Wall Panel Spreadsheet

, 🖲, Wall	Panel Data										
	Label	A Joint	B Joint	C Joint	D Joint	Material Type	Material Set	Thickness	Design Rule	Design Method	I
1	WP1	N1	N2	N3	N4	Wood	DF	5.5	Typical	Segmented	I
2	WP2	N9A	N10A	N11A	N12A	Wood	DF	5.5	Typical	Segmented	I
											•

- No Header Design in Segmented Design → Ineffective Section
- h/w ratio is required for design (NDS Table 4.3.4)

Segmented Design

Segmented wall design.r3d

Echo Input Geometry of the Entire wall Max H/W Ratio- per Region Enveloped Results Controlling Region

Region Information

Deflection Information

Detail Report for - WP1		
<< >> Print Page Setu Wall Vall	IP Help	
Company : Designer : Job Number :	WP1 (In-Plane)	June 18, 2010 10:41 AM Checked By:
GENERAL Code : NDS 2005:ASD Design Method : Segmented Wall Material : DF Panel Schedule : User Selected Sel. Shear Panel: S1_(2)15/32_10d(GEOMETRY Total Height : 10 ft Total Length : 10 ft Max H/W Ratio : 3.33	MATERIALSDescriptionMaterialSizeTop PIDF2-2X6SillDF2X6Wall StudDF2X6ChordDF2-2X6
DESIGN DETAIL S	R2 H1 R3 R1	
ENVELOPED RESULTS Controlling Shear Panel UC R3 S1_(2)15/32[0.890	Shear Controlling Hold-down Hol LC Hold-down UC LC 10 (W) HDU14-S 0.902 17 (M)	d-down Chord Chord Stud Stud UC LC UC LC (W) 0.922 10 (W) 0.119 2
REGION INFORMATION Full-Height H/W Shear Shear Region Label Ratio UC LC R1 3.33 0.644 9 (V R3 2.22 0.890 10	ear Hold-down Hol Hold-down UC LC V) HDU14-SDS2.5 0.550 18 ((W) HDU14-SDS2.5 0.902 17 (d-down Chord Chord Stud Stud UC LC UC LC (W) 0.564 9 (W) 0.119 2 (W) 0.922 10 (W) 0.117 2
OPENING INFORMATION Headers of openings are not design Please choose Perforated or FTAO (ned for Segmented walls. design method to get header design.	
DEFLECTION RESULTS Maximum Region Fini Deflection (in) Deflection LC Deflection 4 (R3) 10 .632	ite Element Shear Stiffness lection (in) Adjustment Factor (SS 21 1	SAF)

Wall Detail Report

NDS Special Design Provisions for Wind And Seismic Eq 4.3-1

$$\delta_{sw} = \frac{8vh^3}{EAb} + \frac{vh}{1000G_a} + \frac{h\Delta_a}{b}$$

E = Modulus of elasticity of end posts (chords), psi A = Area of end post (chord) cross-section, in²

RISA Detail Report

DEFLECTIONS		
Flexure Comp	: .0057	in
Shear Comp	: .1818	in
HD Elona	: .0543	in
Tot Deflection	:.2418	in
Governing LC	: 9	

Ga = Apparent Shear Stiffness from nail slip and panel deformation. This value (in combination with the Min Panel Thickness) is used to set the elastic stiffness of the wall panel that will be used during the FEM solution.

 Δ_a = Total vertical elongation of wall anchorage system (including fastener slip, device elongation, rod elongation, etc.) at the induced unit shear in the shear wall, in

Deflection & FEA Analysis

DEFLECTION RESULTS Maximum Region Finite Element Shear Stiffness Deflection (in) Deflection LC Deflection (in) Adjustment Factor (SSAF) .2418 (R1) 9 .2112 1

FEM Deflection \rightarrow NDS Imperial Equation

Ó, Wall	Nall Panel Data											
• •	Label	A Joint	B Joint	C Joint	D Joint	Material Type	Material Set	Thickness	Design Rule	Design Metho	d SSAF	
1	WP1	N1	N3	N4	N5	Wood	DF Larch	5.5	Typical	Segmented	1	
2	WP2	N6	N7	N8	N9	Wood	DF Larch	5.5	Typical	Segmented	1	

SSAF (Shear Stiffness Adjustment Factor)

This column allows the user to manually adjust the shear stiffness of a particular wall panel.

With this adjustment factor the user can match up the deflections from their hand calculations with the FEM joint deflections at the top nodes in the wall.

Deflection & FEA Analysis

Enveloped Results Controlling Region

Wall Detail Report

• Echo Input

 Region Geometry Region H/W Capacity Adjustment Factor per 4.3.4.1 Wind ASIF- NDS give 40% increase in the lateral tabular values Stud Spacing- Per Design Rules

Design Summary

- Shear capacity from Wall Panel database (based on IBC 06 Table 2306.4.1)
- Chords Forces

Chord Forces

- Calculated differently Tension vs. Compression
- Tension: NDS 2005 4.3.6.4.2 includes Dead Load stabilizing moment
- Compression: Include only the tributary area of one stud spacing

```
Segmented Design: Chord forces based on only one Region
```

FTAO & Perforated: Chord Forces based on the entire wall

Chord Design

Stud Design

- Stud design is based on the Enveloping the maximum section forces from each region over the entire wall.
- Stud Spacing based on Required Capacity (unless spacing explicit in Design Rules)
- Code Check: Required Cap / Provided Cap
- Optimizing spacing starts at max and work its way down at 2" increments

NOTE: All the load combos considered Run a batch solution with only Gravity only loads

Hold Down Forces

- Tension only forces
- Provided Cap is the **Allowable Tension** column of the hold-down database.
- The hold-down LC Governing is the largest tension force.

NOTE: The HD Deflection is reported for the maximum shear LC, which may not result in the largest hold-down component, but typically results in the highest total deflection.

DESIGN DETAILS CELECTED CUEAD DANEL

SELECTED SHE	AN PANEL	
Panel Grade	: St-I	
Panel Thick	: 0.469	ir

S1 (2)15/32 10d@3

Nail Size	: 10d	
Regd Pen	: 1.250	in
Read, Spacing	: 3	in

Num Sides : Two Quer Cyp Brd Shear Capacity : 1.330 k/ft Adjusted Cap : 1.862 k/ft

NOTE: NDS 2005 defines a 10d nail as being

3.0" x 0.1480" common or 3.0" x 0.122" galvanized box

SELECTED HOLD-DOWN : Raised : No AB Diameter : 1.000 in HDU14-SDS2.5_5.5_DF Fastener Size : SDS25212 Num Fasteners : 36

Regd Chord Thk:	5.50 in
Redd Cuord Wat:	Douglas FIF
Base Capacity :	10.820 k
CD factor :	1.6

Selected Shear Panel

- Echo all information from Shear Panel Database
- Adjusted Capacity:

Seismic force controls: 2bs/h from IBC06 2305.3.8.2.2.3 Wind force controls: 1.4 Increase

Selected Hold-Down

- Echo all information from Hold-Down Database
- The "Base Capacity" is the capacity from the manufacturer divided by the assumed Cd value from the database. The actual capacity of the hold-down is the Base Capacity*CD factor.

Cross Section Detailing

- Wall thickness, and stud spacing
- Sheathing panel designation.
- Chord sizes/forces with T= Tension, or C=Compression forces
- Hold down designations/forces

Note: If either chord is only experiencing a compression ONLY force, the hold down will not be drawn.

Perforated Design

- Use only the portions of wall that have full height sheathing
- Treat the wall instead as a significantly shorter wall.
- Amplifies the chord and hold down design forces significantly while at the same time increasing the design unit shear
- There are a number of Code constraints- which are enforced in RISA (NDS05 4.3.5.3)
- Hold Downs only at the ends of the walls

Perforated Design

Perforated wall design.r3d

: NDS 2005: ASD

MATERIALS Description Material Size Header DF 6x8

2X6

6x6

DF

DF

Perforated Design- Header Design

- All Load combinations enveloped
- Header suggestion: Run Gravity Loads for design

GEOMETRY

Opening Height: 6

Opening Width : 2.5

ft

ft

Sill

Trimmer

DESIGN DETAILS

CRITERIA

Wall Type : Perforated

Code

HEAD Max B Locati Equati	ER ending Che on ion	eck 0.015 1.125 3.9-3	ft	Max St Locati Gov LO	near Check on C	0.035 (y 0 ft 2)
CD 1. Cr 1.	000 RE 000	2.727		CL 1.	000		
	(ksi)	Cm	Ct	CF			
Fb1'	1.2	1	1	1	Le-Be	nding	2.5 ft
FV′	.17	1	1				

 Code check based on Shear and Moment only Not Axial Loads

Perforated Design

Perforated wall design.r3d

The length of the wall is calculated:

 $\Sigma L_i := L1 + L2$

Max induced unit shear force (NDS05 4.3-6):

$$v_{\max} \coloneqq \frac{V}{C_0 \cdot \Sigma L_2}$$

Tension and Compression Chord forces (NDS05 4.3-5)

$$\mathbf{T} := \frac{\mathbf{\nabla} \cdot \mathbf{h}}{\mathbf{C}_{\mathbf{0}} \cdot \boldsymbol{\Sigma} \mathbf{L}_{\mathbf{i}}}$$

Co = Shear Capacity Adjustment Factor (NDS05 Table 4.3.3.4)

or Calc using equ. available in NDS08

$$Co = \left(\frac{r}{3 - (2 * r)}\right) * \frac{Ltot}{\Sigma Li} \qquad r = \frac{1}{1 + \left(\frac{Ao}{h * \Sigma Li}\right)}$$

Perforated Design

$$Co = \left(\frac{r}{3 - (2 * r)}\right) * \frac{Ltot}{\Sigma Li} \qquad r = \frac{1}{1 + \left(\frac{1}{h}\right)}$$

$$=\frac{1}{1+\left(\frac{Ao}{h*\Sigma Li}\right)}$$

Ao defined by NDS05 Table 4.3.3.4

"maximum opening height shall be taken as the Maximum opening clear height in a perforated shear wall."

Ao= $2.5' * 5' = 15 \text{ ft}2$ r = $\frac{1}{1+(15/10*7.5)} = .83$	GENERALCode: NDS 2005:ASDDesign Method: PerforatedWall Material: DFPanel Schedule: User SelectedOptimize HD: NoHD Manufacturer:SIMP SON	GEOMETRY Total Height : 10 Total Length : 10 Wall H/W Ratio : 1.00 Max Opening Ht : 6.00 Open/Wall Ht Ratio : 0.6 Full Ht Sheathed : 7.5 % Full Ht Sheathed : 75	ft □ ft T ft V 60 C 60 ft .00	MATERIALS Description Top PI Sill Vall Stud Chord	Material DF DF DF DF	Size 2-2X6 2X6 2X6 2-2X6
$Co = \frac{.83}{3 - (2x0.83)} * \frac{10'}{7.5'} = .83$		R2 H1 R3	R1			
	DESIGN DETAILS Shear Stiffness Adjustment Factor Wall Capacity Adjustment Factor (2w)	: 1.00	r Capacity Adjuct Area of Openings Uning Area Ratio	ment Factor s (A0) (1)	(Co): 0.83 : 15.0 : 0.85	υ π^2
	Nailing Capacity Increase for Wind	: 1.4			1.00	1.1

Perforated Design

 $Co = \left(\frac{r}{3 - (2 * r)}\right) * \frac{Ltot}{\Sigma Li} \qquad r = \frac{1}{1 + \left(\frac{Ao}{h * \Sigma Li}\right)}$

Ao defined by NDS05 Table 4.3.3.4

"maximum opening height shall be taken as the Maximum opening clear height in a perforated shear wall"

	GENERAL Code : NDS 2005:ASD Design Method : Perforated	GEOMETRY Total Height : 10 ft Total Length : 10 ft	MATERIALS Description Material Size Top PI DF 2-2X6
Ao= 2.5' *3.5' = 8.75 ft2	Wall Material : DF Panel Schedule : User Selected Optimize HD : No HD Manufacturer: SIMP SON	Wall H/W Ratio : 1.00 Max Opening Ht : 3.50 ft Open/Wall Ht Ratio : 0.35 Full Ht Sheathed : 7.50 ft	SillDF2X6Wall StudDF2X6ChordDF2-2X6
r = 1 = .90 1+ (8.75/10*7.5)		% Full Ht Sheathed : 75.00	
		R2	
Co = <u>.90</u> * <u>10'</u> = .99 3- (2x0.90) 7.5'		R3 R1	
		R4	
	DE SIGN DETAIL S Shear Stiffness Adjustment Factor Wall Capacity Adjustment Factor (2w/h Nailing Capacity Increase for Wind	: 1.00 Shear Capacity Adj D): 1.00 Total Area of Openi Sheathing Area Ra	ustment Factor (Co): 0.99 ings (Ao) : 8.75 ft^2 tio (r) : 0.90

Perforated Design

Chord Forces

• Each side of the wall is governed by different Load Combinations (T or C)

Stud Design

Design Spacing

Hold Downs

Only Tension forces displayed

Perforated & FTAO Design

Force Transfer Around Openings (FTAO)

• Rational analysis of the wall assuming the straps and blocking can added at the corners of the openings to transfer the sheathing forces across these joints.

 The sheathing resists the shear forces. This method essentially allows you to use the entire area of the wall (minus the opening) to resist the shear in the wall.

- RISA breaks up the wall into "Blocks"
- Only valid for Windows not Doors
 Hold Downs-

Separate Shear Regions

Chords₇ ÷ Ei

FTAO Wall

FTAO wall .r3d

• The **average** shear force in each block of the wall is displayed that location.

• The **maximum** shear in each of these locations will control the design of the wall.

• Area weighted average of the Fxy plate forces to determine the average shear for each block.

Header Detail Report

ANALYSIS SUMMARY		
Block #	Unit Shear (lb/ft)	h/w Ratio
1	217.068	0.625
2	435.604	1.000
3	152.254	0.375
4	326.066	0.214
5	151.505	0.375
6	438.770	1.000
7	219.314	0.625
8	250.281	0.357

Display Panel Contours: Fxy

FTAO Wall

Header Detail Report

DESIGN DETAILS OPENING STRAPS Name Location Direction S1 Bottom, Left Horizonta

S1	Bottom, Left	Horizontal	388.5	1
\$2	Upper, Left	Horizontal	-476.5	1
S3	Upper, Right	Horizontal	485.4	1
S4	Bottom, Right	Horizontal	-393.1	1
S5	Bottom, Left	Vertical	1687.1	1
S6	Upper, Left	Vertical	-54.8	1
S7	Upper, Right	Vertical	84.0	1
S8	Bottom, Right	Vertical	-1670.7	1

- The Strap Forces are shown based on the Blocks
- The moment at the edge of each block above or below an opening is transmitted across the opening interface by horizontal tension straps or compression blocks
- The moment at the edge of each block that is to the **right or left of an opening** is transmitted across the opening by tension straps or compression blocks. However it is likely that the sheathing and king studs will be capable of transmitting these forces.

Reg'd Cap (lb) Gov LC

FTAO Wall

ECHNOLOGIES	GENERAL Code : NDS 2005:ASD Design Method : FTAO Wall Material : DF Larch Panel Schedule : User Selected Optimize HD : No HD Manufacturer: SIMP SON	GEOMETRY Total Height : 8 ft Total Length : 15 ft Wall H/W Ratio : 0.53	MATERIALSDescriptionMaterialSizeTop PIDF Larch2-2X6SillDF Larch2X6Wall StudDF Larch2X6ChordDF Larch2-2X6
FTAO Wall Results 🔶 Perforated W	/all Results	H1	
 Echo Input Design Details SSAF Capacity Adjustment Factor per 4.3.4.1 	R4		R1
Wall Deflections NDS Eq 4.3-1			A
Wall Results: Max Unit Shear: Max Block Shear from	DESIGN DETAILS Shear Stiffness Adjustment Factor Wall Capacity Adjustment Factor (2w/	: 1.00 /h): 1.00	
Header Detail Report Total Shear	WALL DEFLECTIONSElastic:: .004 inHD:: .015 inShear:: .092 inTotal:: .111 in	WALL RESULTS: Governing LC : 1 (SeiSmic) Total Shear : 3497.493 lb Max Unit Shear : 438.77 lb t Shear Ratio : .954	
	SELECTED SHEAR PANEL : S1_(2)3/ Panel Grade : St-I Panel Thick : 0.375in	8_8d@6 Nail Size : 8d Reqd Pen : 1.375in Reqd. Spacing : 6 in	Num Sides : Two Over Gyp Brd. : No Shear Capacity : 459.996 lb/ft Adjusted Cap : 459.996 lb/ft
	NOTE: NDS 2005 defines a 8d nail as	s being: 2.5" x 0.1310" com 2.5" x 0.113" galva	nmon, or nized box

Walls can be stacked on top of each other using Straps

- Straps are used for anchorage to the wall panel below
- You can only add straps after Regions are added

•Strap forces are only Tension forces

DESIGN DETAILS

ENVELOPED I	RESULTS								
Controlling		Shear	Shear	Strap	Strap	Chord	Chord	Stud	Stud
Shear Region	Shear Panel	UC	LC	Force (k)	LC	UC	LC	UC	LC
R1	RS_3/8_8d@3	0.976	1 (S)	4.000	2 (S)	0.333	2 (S)	0.000	1 (S)

REGION INFORMATION

Full-Height	H/W	Shear	Shear	Strap	Strap	Chord	Chord	Stud	Stud
Region Label	Ratio	UC	LC	Force (k)	LC	UC	LC	UC	LC
R1	1.00	0.976	1 (S)	4.000	2 (S)	0.333	2 (S)	0.000	1 (S)

Strap Forces

Straps can be used to tie walls to Columns below

• You will need to manually add these straps in the Wall Panel Editor

Strap Forces

Soft Story.r3d

Problem: R3 Does not meet the Aspect Ratio. Design Not Done

Problem: Discontinuous Walls

• Loads are transferred into the wall below.

- Add Post to center of wall Post can be "Compression Only"
- Add Boundary Condition at the base of the wall

- Different Chord Forces
- Different Deflections

Problem: Platform Framing (FTAO only)

Fix: Adjust your opening height to include the depth of the floor framing.

This will reduce the portion of the wall above the opening thus reducing the amount of area to transfer shear forces.

- Diaphragm defined by "Slab Edge"
- Lateral walls resisting Lateral loads

Diaphragms Loads

Wood building Flexible .r3d

Flexible Diaphragm: Loads are distributed to the Lateral walls resisting X direction loads:

Rigid Diaphragm: Lateral Loads applied in Z Direction:

Flexible Diaphragm: Loads are distributed to the **Lateral** walls resisting Z direction loads:

Diaphragm Loads

The Lateral loads on the walls are created in the Transient Area Load Cases

- Automatically Generated
- Automatically applied
- For Viewing purposes only
- You can "Copy" these loads if needed

🕷 Basic Load Cases											X
	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distrib	Area (Surfac	
1	Dead Load	DL		-1			192	134		3-5	-
2	Live Load	LL					192	134			
3	Live Load Special (public assemb	LLS									7
4	Roof Live Load	RLL									
5	Snow Load	SL									
6	Snow Load Nonshedding	SLN									
7	Rain Load	RL									
8	Wind Load X	WLX				1					
9	Partial X Wind Load 1	WLXP1				1					
10	Partial X Wind Load 2	WLXP2				1					
11	Wind Load Z	WLZ				1					
12	Partial Z Wind Load 1	WLZP1				1					
13	Partial Z Wind Load 2	WLZP2				1					
14	Earthquake Load X	ELX				1					
15	Earthquake Load X Plus Z Eccentr	ELX+Z				1					
16	Earthquake Load X Minus Z Eccent	ELX-Z				1					
17	Earthquake Load Z	ELZ				1					
18	Earthquake Load Z Plus X Eccentr	ELZ+X				1					
19	Earthquake Load Z Minus X Eccent	ELZ-X				1					
20	Other Load 1	0L1									
21	Other Load 2	OL2									
22	Other Load 3	OL3									
22	Other Load 4	014									1
24	BLC 8 Transient Area Loads	None						79			
25	BLC 11 Transient Area Loads	None						107			1
26	BLC 14 Transient Area Loads	None						79			
27	BLC 17 Transient Area Loads	None						107			7
28		None									1

Flexible Diaphragms

What's causing the differences between the FEM results and NDS Results? Rotation

What's really happening?

Multiple Story Building

Multiple Story.r3d

TECHNOLOGIES

Questions?

Please let us know if you have questions. We will answer as many questions as time permits during the webinar.

Once the webinar is closed, we will post all Q&A's, at the models used and the Power Point presentation, to our website: <u>www.risatech.com</u>

We will be also be sending you a PDH certificate after the presentation.

For further information, contact us at: info@risatech.com

Thank you for Attending!